GNU COBOL 2.0

(Formerly OpenCOBOL)

[11FEB2012 Version]
Programmer’s Guide

2" Edition, 21 November 2013

Gary Cutler

CutlerGL@gmail.com

OpenCOBOL Copyright © 2001-2009 Keisuke Nishida
OpenCOBOL Copyright © 2006-2012 Roger While

Under the terms of the GNU General Public License

Document Copyright © 2009-2013 Gary Cutler

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License [FDL], Version 1.3

or any later version published by the Free Software Foundation;

with Invariant Section “What is GNU COBOL?”, no Front-Cover Texts, and no Back-Cover Texts

A copy of the FDL is included in the section entitled "GNU Free Documentation License"

mailto:CutlerGL@gmail.com

GNU COBOL is an evolving tool.

While all reasonable attempts will be made to maintain the currency of the information in this document, neither the
author of this document nor the authors of the GNU COBOL software, extend any warranties of any kind for this
document or for the information contained therein.

Summary of Changes

Edition ‘ Date ‘ Change Description

d 17 July 2012 Updated for version 11FEB2012 of GNU COBOL 2.0

» The use of a slash character (“/”) in column 7 was documented — this feature has existed since
at least the 06FEB2009 version of OpenCOBOL 1.1, but was undocumented (section 1.6)

» Added documentation on the DEBUG-ITEM special register (section 6.1.8).
» Updated DECLARATIVES documentation to better explain how to use it. See section 6.1.4.

» A new section was added to the documentation to discuss the ramifications, rules and
capabilities of sub-programming (section 7).

» Documentation was added on the COB_SET_DEBUG environment variable (section 8.1.4).

» The listings of all sample programs in chapter 9 are now presented as listings generated by the
GNU COBOL Interactive Compiler utility (itself included as a sample program in section 9.4).
This not only shows full source listings of the sample programs but complete cross-reference
listings as well.

» A new sample program — DAY-FROM-DATE — was introduced to illustrate how to write a user-
defined function (section 9.3)

» User-defined functions are now supported (sections 3, 7.1, 7.4.2 and 9.3)
» A new built-in subroutine — CSPRINTABLE — was introduced (section 8.3.1.11) (the COBDUMP
sample program (section 10.2) now uses it!

7 July 2011 Updated for pre-release version 29APR2011 of OpenCOBOL 2.0

» Corrected a problem with bogus footnote references in Figure 6-23.

» A reference to a new figure documenting error codes was added to the EXCEPTION-STATUS
function (section 6.1.7.21).

» Documentation was added to the CLOSE statement (section 6.4.7) to explicitly document how
the last record written to a LINE SEQUENTIAL or LINE ADVANCING file may have a terminating
delimiter sequence written at the time the file is closed.

» Documentation was added to the WRITE statement (section 6.4.50) to explicitly document
how the ADVANCING options are handled with LINE SEQUENTIAL and the new LINE
ADVANCING files.

» Additional documentation on the cobcrun command (section 8.2.2) was added.

» LINE ADVANCING files are now supported (section 1.3.3.5).
» Floating-point literals of the form [+-]nn.nnE[+-]nn are now supported (section 1.8)
» Z”xxxxx” null-delimited alphanumeric literals are now supported (section 1.8)

» The COPY statement now supports the COBOL2002 standard LEADING and TRAILING options
as well as the “IN/OF library-name” and SUPPRESS PRINTING options (section 2.1.1)

» The REPLACE Compiler-Directing Facility (CDF) statement was introduced (section 2.1.2)

» Conditional code generation is now supported through the use of >>DEFINE, >>IF, >>SET,
>>SOURCE and >>TURN Compiler-Directing Facility (CDF) directives (section 2.2)

» The COB_LINE_TRACE environment variable was renamed to COB_SET_TRACE (section 8.2.4).
» The COB_DISPLAY_WARNINGS (section 8.2.4) environment variable was introduced.
» SOURCE-COMPUTER WITH DEBUGGING MODE is now supported (section 4.1.1)

» The CHARACTER CLASSIFICATION clause of the OBJECT-COMPUTER clause is now supported

(section 4.1.2).

» Mnemonic names are now optional for SWITCH declarations in SPECIAL-NAMES (section
4.1.4); Eight new switches (SWITCH-0, SWITCH-9 thru SWITCH-15) are now available; Switches
may be specified as SWO thru SW15 as well as SWITCH-0 thru SWITCH-15; a new print channel
designation of CSP is now available; SYMBOLIC CHARACTERS are now supported (section
4.1.4)

» The device name DISC may now be used interchangeably with DISK in SELECT statements
(section 4.2.1)

» Files may now be SELECTed with the “NOT OPTIONAL” designation in addition to “OPTIONAL”
(section 4.2.1).

» New USAGEs of BINARY-INT, BINARY-LONG-LONG and COMPUTATIONAL-6 (Figure 5-10 and
section 7.8.3) were introduced.

» The LEFTLINE screen attribute was added to the SCREEN SECTION (section 5.6).
» New intrinsic functions were introduced:

MODULE-CALLER-ID (section 6.1.7.47)
MODULE-DATE (section 6.1.7.48)
MODULE-FORMATTED-DATE (section 6.1.7.49)
MODULE-ID (section 6.1.7.50)

MODULE-PATH (section 6.1.7.51)
MODULE-SOURCE (section 6.1.7.52)
MODULE-TIME (section 6.1.7.53)

O O O O O O O

» A new option - WITH KEPT LOCK (section 6.1.9.2) - was added to the READ verb.
» USE FOR DEBUGGING is now supported (section 6.1.4)
» The following changes were made to the ACCEPT Statement
® The TIMEOUT option was added to Format 4 (section 6.4.1.4).
#® The non-functional CONVERSION option was added to Format 4 (section 6.4.1.4).

® The LINE NUMBER option (a synonym for LINES) and COLS option (a synonym for
COLUMNS) and ESCAPE KEY options were added to Format 6 (section 6.4.1.6)

#® A new format — Format 7 — was introduced (section 6.4.1.7)

» The ALTER verb (section 6.4.4) is now supported [Editorial Comment: this change was made
only because NIST tests need it and not because you should be using it!]

» Options (mnemonic-name, STDCALL and STATIC) were added to the CALL verb (section 6.4.5).

» The non-functional CONVERSION option was added to Format 4 of the DISPLAY statement
(section 6.4.12.4).

» The REVERSED option for the OPEN statement is now supported syntactically, even though it is
non-functional (section 6.4.29).

» The READY TRACE (section 6.4.32) and RESET TRACE (section 6.4.34) statements were
introduced.

» A new option — STATUS — was added to the STOP verb (section 6.4.42).

» The following built-in named subroutines were added:

® CSCALLEDBY (section 8.3.1.1)

® CSGETPID (section 8.3.1.6)

® CBL_GET_CSR_POS (section 8.3.1.29)
& CBL_GET_SCR_SIZE (section 8.3.1.30)

» The following built-in numbered subroutines were added:

® X”E4” (section 8.3.2.2)
® X”E5” (section 8.3.2.3)

17 Sept 2010 » Introduced documentation for the hitherto undocumented “COBCPY” environment variable
(sections 8.1.4 and 8.1.5).
» Corrected “section 0” broken hyperlinks in the document.
1 Apr 2010 Elaborated on the use of the GLOBAL clause in data item definitions (section 5.3).
23 Jan 2010 INITIAL RELEASE OF DOCUMENT — corresponds to version 06FEB2009 of OpenCOBOL 1.1

GNU COBOL 2.0 Programmers Guide Table of Contents

Table of Contents

1. INTRODUCTION . ..ttioiitismssnssessnsssssssssssesasssassss sssssasssessnssasssnssssssnssas 1-1
1.1. What is GNU COBOL?......ccuucciiiiireeieeieeerereennnsseestereennssssssessssennssssssssssssnnsssssssssesssnnssssssssesssnnssssssssssssnnnsssssessasnnnnne 1-1
1.2. Additional References and DOCUMENTEScccuveeeeeriiiieeeeeeeeeeeeeeeeeeeeemeeeeesseeesesssess 11
0 R o o [W Tl =00 1 20 N 1-1
1.3.1. “I Heard COBOL is @ Dead LanguUage!”eeeeiiiiiiiiimmieiiiiiiiiinnneniiisssssseesssssssssssssesssssssssssssssssssssssssssssnes 1-1
1.3.2. Programmer Productivity — The “Holy Grail”........ccccovriiiiiiiiiiiinririssssisssnnes 1-3
1.3.3. Notable COBOL/GNU COBOL FEAtUIESccccvveerrererrrrnnreeerresssssssssesessessssssssssessssssssssssssssssssssssssssassssssssssnnnnaes 14
1.3.3.1. Basic Program Readabilityccceeeeeeeeeeeeieeeieeeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeessssssssesssssssssssssssssssssssssssssssssssssssnnns 1-4
1.3.3.2. COBOL Program StrUCTUIEcicuuiiirmniiinneiiiinneiiinmessisnsssienesssisssssstsnssssrasssssssnssssssnsssssansssssansssssansssssans 1-6
1.3.3.3. COPYDOOKS .ceevrrriernireieneeiieeeeeeeeeeemeeeeemmmeeeeemeeesess 1-6

0 TR T T 1o W =T 0 - 1-7

0 T8 20 T | =T 1-7

O T T - 1o 1T o T T LT - N 19
1.3.3.7. Sorting and Merging Dataccccciiiiiiiieiiiiiiiiiieniieeiiieeeneeieeesssesnnsssssessssssnnssssssssssesnnssssssssssssnnnnssnnss 1-10
1.3.3.8. String Manipulationccceeiiiiiiiiiiiiieeieiieeieeeeeeeeeeeeeeeeeeeeeeeeeeeesesesseseesarssrrrssssssssssssssssssssssssssssssnnnnnnnnnnn 1-10
1.3.3.9. Textual-User Interface (TUI) FEAtUIES.......cceesmeesesssesssssssssssssssssssssssssssssssssnnnns 1-12

1.4. Syntax Description CONVENTIONScciiiiiimimniiiiiiiinimmniiiiiiiimmmmmsiiisiiimesmsssssssiiesssssssssssstssssssssssssssssssssssssssssssssnnes 1-2
1.5. General GNU COBOL Program FOrmMatccccceeeiiiiiieieeieeeeeeeeeeeeeeeeeeeseessssssess 1-3
1.5.1. S0oUrce LiN@ FOIMALcuuuiiiiiiiiiiiiiiiiiiiiissssssssss s s s s s s s 1-3
1.5.1.1. Fixed FOrmat IMOOecccccuueiiiiiiiiiieniniiinisnneeesnsssssssssees s sssssssss e s s s ssssssssnssessssessssssnssessssssssssnnnsenns 1-3
1.5.1.2. Free@ FOrmat IMOGe.........ciiiiiiiieeiciiiniiieiiesccsiiseesnnssssessseesnnssssssssssesnnsssssssssessnnnsssssssssssnnnnsssssssssssnnnnsssnss 14
1.5.2. Program StrUCTUIE.....cccuuiiiiieiiiiieiiiiteiiiineiiirnesisiensssstesessstenessstensssstenssssrssssssrsnsssstanssssssnsssssanssssssnsssssansssssnne 1-4
1.6. In-Program Documentation (i.e. “COMMENTS”)ccceeeeeeeeeeiiieiieieeeieeeeeeeeeeeeeeeeeeeeeeeeseesesseesesmesseesssssssssssssssssssssnnnns 1-5
1.7. Use of COmmas and SEMICOIONSccccvvuueiiiiiiiiiiiiiniiiiiiiiisiisteensssssssssee s sssssse e s s sssssssssssesssssssssssnssessssssssssnns 1-6
R U LYo = - N 1-6
R R I T T T=T T o I =T 1-6
1.8.2. AIPhanUumEriC LItEIalSccceviriiiiiiiiiiiiiiiiiiiisss 1-7
1.9. Use of FIUrative CONSTANTScccceeiiiiiiiiiiieieiieeceesesseseseeessssssssssssssssssssnnssssssnsnsnnnnsnnnnnnns 1-8
1.10. USer-Defin@d NAMES........ccccceeiiiiiiieiiiiiiecteeeseeeeeeeeesseeseesssssssssssssssssnnssssssnsnsnsnsnnnnnnnnn 1-8
1.11. US@ OF LENGTH OF.....cciiiiiiiiineeeiiiniiiisssnnsesssisssssssnssessnssesssssssssssnnsassssssssssnns 1-8
2. THE GNU COBOL COMPILER DIRECTING FACILITY [CDF] ..ccctusmsmsssussssssssssssssssssssssssssssssssess 2-1
2.1. Text Manipulation StAatE@MENTSeeeeeeeeeeeeeemeemmeememmmmmeeememmemsessnnnns 2-1
2.1.1. The COPY StatemeENtccoiiiiiieeiiiiiiiieeinsieesreeeennsseseeseseennssssssssssesnnnssssssssssennnssssssssssesnnnssssssssssennnnsssssssnnes 2-1
2.1.2. The REPLACE StatemeENt.....ccccceeeeeiiiiiiiiiieieeiiiiriienneessseeseseennsssssssssseennnssssssssssennnssssssssssesnnnsssssssssssnnnnssssssssnes 2-1
2.2, CDF Dir@CEIVES ... ceeeeeeeeeneieeereeeeennseessrereenassssessreeesnmsssssssseeesnnssssssssseesnnsssssssssesennsssssssssesennsssssssssseennnssssssssnsennnnssnnns 2-2
2.2.1. The >>DEFINE Dir@ChIiVecccceteeeeeeieiiirieeeenneseeerreienmensssessseeeenmnssssssssesennnssssssssessnnnssssssssssssnnnssssssssesennnnsssssssnnes 2-2
2.2.2. ThE S IF DIFECLIVE ..eeeeriiiiiiiiiiuneriiiiiiiisisnnteniiisiisissssessssisssssssssssssssssssssssssessssssssssssssessssssssssssssessssssssssssnsessssssss 2-3
2.2.3. The >>SET DIreCtiVe...cciiiiiiiiiieeeiiiiiiiiiisnnteiiiiisssissseesisisssssssssessssssssssssssessssssssssssssessssssssssssssesssssssssssnnsessssssss 24
2.2.4. The >>SOURCE DIr@CHIVEuuuueereriiiiiisisinneeiiiiiiisissseesiiissssssssssssssissssssssssessssssssssssssessssssssssssssssssssssssssssssssssssss 2-5
2.2.5. The >>TURN DiIrCtIVE .cceeeeeuuerriiiiiiiiiisneeeiiiiiiisisnseesssissesssssssssssssssssssssssssssnssssssssss 2-5
3. IDENTIFICATION DIVISIONcoiiiiiinieiimissiemssssssisssssssssssssssssssssssssssssssssssasssssssssasssessassasssassnsssnssas 3-1
4. ENVIRONMENT DIVISIONoiciiciiniimsnssnissmsssssasssssssesssssssssssssssssssssssssasssssssssasssassassssssasssssnssassssssnns 4-1
4.1. CONFIGURATION SECTION.......ccceiiirrunereririsissssnneesisisssnnsenss 4-1
4.1.1. SOURCE-COMPUTER Paragraphcceeeeeuciiiiiiieiiecciiriieeeiensscsessseeennssssssssssssnmnsssssssssssnnnnsssssssssssnnssssssssesennnnns 4-1
4.1.2. OBJECT-COMPUTER Paragraphccccoeeeiiiiiiiiiiiiiisiiississssssiss 4-2
4.1.3. REPOSITORY Paragraph.......cccccceserss 4-3
4.1.4. SPECIAL-NAMES Paragraphccccceeeeiiiiiiiiiiiiiiississs 4-4
4.1.4.1. The alphabet-Name ClaUSE.ccceiiiiiiiiiiiiiiiiiiiiiiii s s s s s s s s s s s s s s s s ss s s s s s s s ssssssssssssssssssssasssssnnnns 4-6
4.1.4.2. The class-Name ClaUSEcccceiiiiiiiiiiiiiiiiiiiiiiiiiissiesssssssesssnens 4-6
4.1.4.3. The sWitch-definition ClaUSE.........cccciiiiiiiiiiiiiiiiiiiiieese s s s s e e s s s s s s s s s s s s s sssssessssessssssssnsnnns 4-7
4.1.4.4. The symbolic-cRAracters ClauSeccouviiiiiiiiiiiiiiiiiiiiiess s e s s s s s s s s s s s s s s s ssssssssssssnens 4-7

11FEB2012 Version i

GNU COBOL 2.0 Programmers Guide Table of Contents

4.2. INPUT-OUTPUT SECTION.....cccitiiiiiiinnneerinisssssssssessssissasssssssssssssssnsnsss 4-8
4.2.1. File SELECT STatemMeNt.......cceiiiiirurreiiiiiiisissnnneeniiisissssssseessessssssssssssssesssssssssssnnsanss 4-9
4.2.1.1. SELECT Without an “organization-clause”oovieviveriiiiiiiiiiiiiiniesrr e 4-11
4.2.1.2. ORGANIZATION SEQUENTIAL Fil@S ...ceeeeeueueeerireennnnnceeereeeenmnnsseesseeeennsssssessssssnnnsssssssssssnnssssssssssssnnnnssnnns 4-11
4.2.1.3. ORGANIZATION LINE SEQUENTIAL Fil@Sccettreemeuneieeerireenmnnsieeereeeennnssseeessesennnssssssssesennnsssssssssssnnnnssnnns 4-12
ORGANIZATION RELATIVE Fil@S ..ccuuuciiiiieeieeniceirireennensieeeseeeenmnsssesesseeesnnssssssssessnnnssssssssssssnnssssssssssssnnnsssssssssssnnnns 4-13
4.2.1.4. ORGANIZATION INDEXED Fil@Suuuueereiiiiiiisissnneniiiiississnnensinissssssssssessssssssssssssessssssssssssssesssssssssssnnsnnns 4-14
4.2.2. 1-O-CONTROL PAragraphccceeceeercrrsssnsnns 4-15
5. DATA DIVISION ..eiiuiitisnnsnismssmssmssasssssnssssssssssssssssnssns 5-1
5.1. File Or SOrt/IMerge File DeSCHIPLIONScccvviruriresriiesniestsestsssssssssessssesssassssassssssssessesesassesassssassssssssesassesassssasssss 5-2
L 0 O =T ol oY o I 0 Ty of g ' 1 T S 5-4
5.2. DeSCribing Data [t@MIS......ceeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseseesasessesssnsssssnnssssssnsnnsnnsnnnnnnnnn 5-4
5.2.1. Defining Non-SCREEN SECTION Data [t@MS......cccceiiiiiiiiiiiiiiiiieisiiesessssssesssssssssessnnnns 5-6
5.2.1.1. ANY LENGTH ClAUSE ..ccceeiriiiirrnnnreriiniisssssnneesississssssssesssssssssssssssesssssssssssnssessssssssssssssssssssssssssnnsassssssssssnns 5-7
5.2.1.2. BASED ClAUSEcccouunerriiiiiiiissnneeesisisssssssnssesssessssssssssssssssssssssssssnssessssssssssnns 5-7
5.2.1.3. BLANK WHEN ZERO ClaUSE......ccettiiiiiiiiiiinnneiiiiiiisissnnneeiiiissssssssessssssssssssssessnas 5-7
5.2.1.4. JUSTIFIED ClAUSEuuuveeeiiiiiissssnneeeiiiisissssssssesssissssssssssessessssssssssnns 5-7
5.2.1.5. OCCURS ClaUSE....uuuuuuereeriiiiiisssnereiiiisiisssssssesssississsssssesssssssssssssssessssssssssssssesssssssssssssssssssssssssssssesssssssssnns 5-8
5.2.1.6. PICTURE ClAUSEuuuueereiiiiiiissssnnneesssssssssssssesssesssssssssssssssssssssssssssssassssssssssnns 5-8
5.2.1.7. REDEFINES ClaUSE....ccettiiiiiiirrsnneeniniiisssssnssessssssssssssssessssssssssssssssssssssssssnsssssssssssssssnsasssssssssssnnsassssssssssnns 5-13
5.2.1.8. RENAMES ClaUSEcuurreiiiiiiissssnneeriniiisssssssessssssssssssssesssssssssssssessssssssssssssessssssssssssnsasssssssssssnnsassssssssssnns 5-14
5.2.1.9. SIGN ClAUSE ...ceeeiiinnnreeiiiiiiisssnneeetisiissssssnssessssssssssssssesssssssssssssssssssssssssssssessssssssssssnsasssssssssssnnsassssssssssnns 5-14
5.2.1.10. SYNCHRONIZED ClaUSEuuuuereeriiiiissssnneeeiiiiiissssssneessissssssssssessssssssssssssessssssssssssssessssssssssssssessssssssssnns 5-15
5.2.1.11. USAGE ClaUSEuuuerriiiiiiiiiiinnrreiiiiiiisissseeeisissssssssssessssssssssssssessssssssssssssessssssssssssssesssssssssssnssessssssssssnns 5-15
5.2.1.12. VALUE ClaUSEuuuuerreiiiiiiiiiinnneeiiiiiiiisisseeessissssssssssessssssssssssssessssssssssssssessssssssssssssessssssssssssssessssssssssnns 5-18
5.2.2. Defining SCREEN SECTION Data HeMSccceiiiiiiiiiiiiiiiiiiiiiiiiiiisiisiisssnns 5-20
5.2.2.1. AUTO | AUTO-SKIP | AUTOTERMINATE ClaUSEceeereerereerersnnersessnnessessnessssssnesssssnnessessnesssssanassessanenss 5-21
5.2.2.2. BACKGROUND-COLOR ClaUSE.....cccetteesrssnnrernsisssssssnnsesssssssssssnssssssssssssssnsssssssssssssssssssssssssssssnnssssssssssssnns 5-21
5.2.2.3. BEEP | BELL ClAUSE ..ceeetiieeeiiineeeeeeeeecisssnneeeeeeseessssssnseesesessssssnsssssssssssssssnsessssesssssssnsssssssssssssnnnsssssesssssnns 5-21
5.2.2.4. BLANK LINE and BLANK SCREEN ClauSE@S.........cccoevvumreriiiiisssssnnneniiiisissssssessiissssssssseessisssssssseessssssssnes 5-22
5.2.2.5. BLANK WHEN ZERO ClaUSE......ceettiiiiiisisnneeiiiiiiiiissnneeniiisssssssssesisisssssssesssssssssssseessssssssssssssssssssssssnas 5-22
5.2.2.6. BLINK ClAUSE ...cceeeuunrreiiiiiiiiinnnieiiiiiiisissseesisissssssssssessessssssssssnssessssssssssnas 5-22
5.2.2.7. COLUMN ClAUSEuuuerreiiiiiiiiisnnneeiiiisissssssseesssissssssssssessssssssssssssessssssssssssssessssssssssssssessssssssssssssessssssssssnns 5-22
5.2.2.8. ERASE EOL and ERASE EOS ClaUSES.......cccceiiiiiiiiiiisiissssisisssnss 5-23
5.2.2.9. FOREGROUND-COLOR ClaUSE....cccittiiirsrsnneerisiissssssnneesnsssssssssnssesssssssssssssssssssssssssssnsasssssssssssnnsassssssssssnns 5-23
5.2.2.10. FROM, TO aNd USING CIAUSESceeuerrrenrerrennneerennserrenssesrenssessenssesssnssesssnssesssnssesssnssssssnssesssnssessnnssssenns 5-23
5.2.2.11. FULL | LENGTH-CHECK ClaUSE......cccceereernerrersunersessnnssssssnessessanesssssnsssssssnsssssssnesssssanesssssnssssssanesssssanasss 5-23
5.2.2.12. HIGHLIGHT and LOWLIGHT ClaUSESccetttriiisssssnneenisisisssssnssensssssssssssssessnns 5-24
5.2.2.13. JUSTIFIED ClAUSE ...ceeerririiiiiisnneeeiiiisisssssnseesssissssssssssesssssssssssssssssssssssssssssessnns 5-24
5.2.2.14. LEFTLINE, OVERLINE and UNDERLINE ClaUSES.......cccettiiisssrsnnneniiisssssssnnnenssissssssssssesssssssssssssssssssssssssnns 5-24
5.2.2.15. LINE ClaUSE@....ccuuuuuuuuuuennnnnnnnssssssnsssnss 5-24
5.2.2.16. OCCURS ClaUSE.....cuuuuueuuerunnnssssssnnsss 5-25
5.2.2.17. PICTURE ClIAUSEcuuuueueuruunnsssnnsnnsss 5-25
5.2.2.18. PROIMPT ClaUSE....cuuuuuuuuunnnnnnnnnnnnnsnsnss 5-25
5.2.2.19. REQUIRED | EMPTY-CHECK ClAUSEccoceerrirrnririsssnnirissnnsisssnnessssssnessssssssssssssesssssassssssssssssssanssssssasanss 5-25
5.2.2.20. REVERSE-VIDEO ClaUSE.......uuereriiiiiissssnneenisiisisssssssesssissesssssssssssssssssssssssssnns 5-25
5.2.2.21. SECURE | NO-ECHO ClAUSEcecoriruririssnessissnnesssssnssssssssessssssssssssssssssssssssssssanesssssasssssssssssssanssssssanasss 5-26
5.2.2.22. SIGN ClAUSE ...ceeeeuuuereiiiiiiiisisnneeniiiisisssssstesssissssssssssessessssssssssssssssssssssssnns 5-26
5.2.2.23. VALUE ClAUSEcuuuueuurnnnnnnnnnnnnnnnnsssnss 5-26
5.2.3. 01-Level Constant DeSCriptionscccvviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiisssisssssssssssssssssssssssssssssssssssssenns 5-26
5.2.4. 66-Level Data Descriptions (RENAMES).......cccovrrreriiiiiicsssnneeniiisssssssnnsesssssssssssnnsesssssssssssnnsssssssssssssnnsesssssass 5-28
5.2.5. 77-Level Data DeSCriptioNns......cccciiiiiiiiiiiiiiiiiiiiiiiininiisisssssssssssss s sss s s e s s s s s s s s s s s e sssssssssssssssssssssssssssssssssssssnnns 5-28
5.2.6. 78-Level Constant DeSCriptionscccevviiiiiiiiiiiiiiiiiiiiirrrrr s e s s e s s s s s s s s e s s s s s s s s s s s ssessenssnnnns 5-29
5.2.7. 88-Level CoNdition NAMESciiiiiiiiinnrniiiiiiiiiinnneiiiiiiisssesisiissssssseesssisssssssesssssssssssssessssssssssssssssssssss 5-29
6. PROCEDURE DIVISIONcoiiiiminiemsnisnismsssissmsssssssssssssssssssssssssssssssssssssssasssssssssasssssssssassssssnssnsssassnssns 6-1

11FEB2012 Version i

GNU COBOL 2.0 Programmers Guide Table of Contents

6.1. General PROCEDURE DIVISION COMPONENTS ...cceeeeeeeeeeeemnmeeeesessnnnns 6-1
LR 0 T - 1 1 (= = =T 1= 4T 6-1
6.1.2. QUAlIfICAtioN Of DAata NAMES ..c..ciieeuiiieeniirieeiirieneerteneseetenssesrenssessesssssssnsssssenssesssnsssssensssssenssssssnsssssansssssannnne 6-4
6.1.3. Reference MOIfiers........cuueeeeeeeeiiiieememieeemeeneeeeeieeemeeemmememmemeeeeessssmss 6-5
6.1.4. EXPrESSIONS ccuuuuiiiiiirriunsiiisiiirrsnsssisssiimmssmsssssssttmsssssssssssstsssnens 6-6
6.1.4.1. Arithmetic EXPreSSiONS...cccciiiiiiiiiiiisiisissiissses 6-6
6.1.4.2. CONAItiONAl EXPrESSIONSccceiiiiiiiiiiiiiisiissses 6-8
(o0 T U LYW i 21 o o Yo [() N 6-11
6.1.6. Use of “VERB” / “END-VERB” CONSEIUCES.......cccerrmreeerreeessrsnnseeessesssssssssssessesssssasssssessssssssssssasessssssssnsssssssssss 6-12
[0 R 1Y 4 T T3 Lol o VT [t o N 6-21
(3 Oy O Y - Y 17 177777 - -7 o RPN 6-21
(3% Wy 0 R Yol 1Y (of X 1 T2 [P RSRP 6-21
6.1.7.3. ANNUITY(interest-rate, NUMBEr-0f-Periods)cccevvverirrreesrssnreresissessssnnessessssssssnsesssssssssssnnnsssssssns 6-21
6.1.7.4. ASIN(SINE)..euuueereririiiirrrrnnreriiiiiisssssseessssssssssssssessssssssssssssessssssssssssssssssssssssssnssessssssssssssnsesssssssssssnnnsssssssss 6-22
6.1.7.5. ATAN(EGNGENL)uuuneeecccceiiieiisisssessssssssesssnnnnne 6-22
6.1.7.6. BYTE-LENGTH(SEFING) «.euuveeeiiiiiiiirrnnreniiiiiiiissnneesisissssssssssesssisssssssnssssssssssssssssssssssssssssssnsesssssssssssnnssssssssss 6-22
6.1.7.7. CHAR(INTEGEI) «...ueeeeeeeeeeiecerececsseesesssssssssessnsnnnee 6-22
6.1.7.8. COMBINED-DATETIME(dQYS, SECONMS).......cuuveeririeeerrrnneenirnieessssnnsessssessssssnnsessessssssssnnsesssssssssssnnssssssssns 6-22
6.1.7.9. CONCATENATE(SLring-1 [, StriNG-2] ...} ceeeeerrreeiiiiiicrsneeeeiiiecccssnnnnesesisssssssnnsesssssssssssnnsesssssssssssnnnassssssns 6-22
6.1.7.10. COS(ANGIL) «eeeveeeeeeeeereriieeiecrrnnreeteeeesesssnnseesssssssssssnssesessssssssnnssesssssssssssnssasssssssssssnnsessssesssssnnnasssssans 6-23
6.1.7.11. CURRENCY-SYIMBOLccccettiiiirrrnnneensnisssssssnneessssssssssssssssssssssssssnsssssssssssssssssasssssssssssansesssssssssssnnssssssssss 6-23
6.1.7.12. CURRENT-DATEcoiiuereiiiiiiissssnneenississnssesssssssssssnnsesssssssssssnnssssssssss 6-23
6.1.7.13. DATE-OF-INTEGER(INEEGEI).....euuuerriiiriiiirrsnnreeiiiiiiisisnnneesisissssssssssesssssssssssnssassssssssssssnsesssssssssssnnssssssssss 6-23
6.1.7.14. DATE-TO-YYYYMMDD(yymmdd [, yy-CULOSF])..ceeeeeeeiiiiiiiiiiiiiiisissssiessssssssssssssssssssssssssssssssssnssssssssnsnes 6-23
6.1.7.15. DAY-OF-INTEGER(INTEGEY) ..coeveurirrirrnririirnniiissnniiiisssnisssssessasssssssanssssssnss 6-23
6.1.7.16. DAY-TO-YYYYDDD(yyddd [, yY-CULOSF]) .ccevevrrrrrniiiinnnisissneiiissnesiissssnssssssssssssssssssssssssssssssessssssssssssanes 6-24
[0 - 6-24
6.1.7.18. EXCEPTION-FILE.......cceetiiiineriissneinisssnnsssssssssssssssessssssssssssssssssssssssssssasssssssassssssssssssssssssssssasessssssssssssanes 6-24
6.1.7.19. EXCEPTION-LOCATION.......ccceeerrrumrrnririssssssnseesssssssssssnssssssssssssssnssssssssssssssnnsesssssssssssnnsesssssssssssnnsassssssss 6-24
6.1.7.20. EXCEPTION-STATEMENTceiiiiiiunreeiiiiisisssnnneesesisssssssnnsesssssssssssnssssssssssssssnnsesssssssssssnnsesssssssssssnnsassssssss 6-25
6.1.7.21. EXCEPTION-STATUSccetiiiiiiiiirnnretiiiiisssssnnseesssssssssssnssssssssssssssnssssssssssssssnssasssssssssssnnsesssssssssssnnsassssssss 6-25
6.1.7.22. EXP(NUMDBEE) ...cuveiiinneiiiiinririiineisisssnisssssssssssssessssssssssssssssssssssssssssssssssssassssssssssssssssssssssasessssssssssssanss 6-25
6.1.7.23. EXPLO(NUMBEY) ccccovuueiriiineiriiineiniissnisisssssssssssessssssssssssssssssssssssssssssssssssassssssssssssssssssssssasessssssssssssanes 6-25
6.1.7.24. FACTORIAL(NUMBET) c...cccneeiiiinriiiisneniiisssnssisssssesssasessssssssssssanes 6-25
6.1.7.25. FRACTION-PART(NUMBEL) c.cccccerueiiiirrnriiiisnniiisssneiisssasssssssasssssssnns 6-25
6.1.7.26. HIGHEST-ALGEBRAIC(NUMErIC-IAENLIfIi@F)..........eeeeeeeeeeeeeeeeieeieeseseessessnssnnnes 6-25
6.1.7.27. INTEGER(NUMBEY)........neeiciiccccsersssesesssnssnsnnnnnnes 6-25
6.1.7.28. INTEGER-OF-DATE(AALE).....ccceerrumrrrririiissssnreerisisssssssnssesesssssssssnssessssssssssssnsesssssssssssnnsesssssssssssnnsassssssss 6-26
6.1.7.29. INTEGER-OF-DAY(AALE) ...ceeererrrunrriiiiiiisissnnneniiiissssisnseesissssssssssssssssissssssssssessssssssssssssesssssssssssssssssssssss 6-26
6.1.7.30. INTEGER-PART(NUMDBET) ...coocuneruerriiiiiiiiinnneniiiinissnneeesisisssssssssssssissssssssssessssssssssssssessssssssssssssssssssses 6-26
6.1.7.31. LENGTH(SErING) ..cceeeevrurreiiiiiiiiisnneeniiiiiissssnnsensiiisssssssssessssisssssssssssssssssssssssssessssssssssssssessssssssssssssssssssss 6-26
6.1.7.32. LENGTH-AN(SLIING) ...uuvveeriiiiiiiirsneeniiniiisssssnsensisisssssssssessssssssssssssssssssssssssssssessssssssssssssesssssssssssssssssssssss 6-26
6.1.7.33. LOCALE-COMPARE(argument-1, argument-2 [, 10€aAIE])ceeeerreirrriiiririrrirssssssssssssssssssssssssnnnnnnes 6-26
6.1.7.34. LOCALE-DATE(AGLE [, IOCAIE])...uuuuneeaeeieieiiieiieeieieseeesessssssssssssssssssssssssssssnnnsssssssssssssssssssssssssnssnnnnnnnnns 6-27
6.1.7.35. LOCALE-TIME(EiME [, IOCAIE]) «.uuuuuuieeeieiiiiiiiiieeeieeiecessesssssssssssssssssssnsssssssnssssssssssssssnssssssssnsssssnnnnnnnnnns 6-27
6.1.7.36. LOCALE-TIME-FROM-SECS(SECONAS [, IOCAIE]) «..euuuunnnciiieiiicirciecireccccecssssssssssssssssssssssssssssssnnnnnnnnnnnnns 6-27
6.1.7.37. LOG(NUMBEK) c...cccoeeiunerriiiiiiiiisneeeniiiisssssssssessssissessssssssssssssessssssssssssnssssssssss 6-27
6.1.7.38. LOGLO(NUMDBEN) c...uuuuuneereiiiiiiiinnneiniiiisississssessssissessssssssssssssessssssssssssssssssssss 6-27
6.1.7.39. LOWER-CASE(SLFiNG) ...ueveeiiiiiissisnnnneiiiiiissssnseesisisisssssssessssssssssssssssssssssssssssssessssssssssssssesssssssssssssssssssssss 6-27
6.1.7.40. LOWEST-ALGEBRAIC(NUMEIIC-IA@NLIfIEI)euueeeeeeeeeieiiiiiriieieeeessesssnsssnnnnes 6-27
6.1.7.41. MAX(NUMBEr-1 [, NUMBEI-2] ...)uuuuueeeieeeiecirieieeeesessnssnsnnnnnnns 6-27
6.1.7.42. MEAN(NUMbBEr-1 [, NUMBEI-2] ...) ceeieeieecrereeiiiiiicsssnneeesisisssssssnnsesssssssssssnnsesssssssssssnnsesssssssssssnnnsssssssas 6-27
6.1.7.43. MEDIAN(nUMbBEr-1 [, NUMBEr-2] ...) ceeeccerereeiiiiiccscneeeenisissssssnnneesssssssssssnnsesssssssssssnnsesssssssssssnnnssssssnas 6-28
6.1.7.44. MIDRANGE(nUMber-1 [, NUMBEI-2] ...) ccccceiiiiiiiiiiiiiiicssissnes 6-28
6.1.7.45. MIN(NUMbBEr-1 [, NUMBEI-2] ...) . ccccieiiiiiiiiiiiiiiissisisssnss 6-28
6.1.7.46. MOD(VAIUE, MOAUIUS)uueiiiiiiiiiiiiiiiiiiisisisssnes 6-28
6.1.7.47. MODULE-CALLER-IDcccettiiiiiiiinnnnniiiiiissssnnseesssissessssssssssssssesssssssssssssssssssssss 6-28

11FEB2012 Version iii

GNU COBOL 2.0 Programmers Guide Table of Contents

6.1.7.48. MODULE-DATEccviueeiiiiiiiiinsnneeniiiissssssssessssisssesssssssssssssssssssssss 6-28
6.1.7.49. MODULE-FORMATTED-DATEccctttiiiiiiinnnnneeniniiisssssseesismssessssssssssssnssssssssss 6-28
6.1.7.50. IMODULE-ID ...cccuuiiiieniiiienniiiieniiirnneiisnsesisnssssisnsesssnssesssnssssssnssssssnssesssnssssssnssssssnssssssnsssssnnsssssnnsssssnnnns 6-28
6.1.7.51. MODULE-PATHcteiiiiieiiiiiiniiiieniiieneitiensiesiensesisnssestenssesssnssssssnsssssanssssssnssssssnssssssnsssssnnsssssnssssssnnsss 6-29
6.1.7.52. MODULE-SOURCEccccceiittniiirenniiireneiisnsesisnsiesisnsesssnsesssnssssssssssssasssssssnsssssssssssssnsssssnnsssssnssssssnnsns 6-29
6.1.7.53. MODULE-TIIMIEccuiiiieiiiieniiiieniiiieneiinienssesisnsesisnssesssssesssnssssssssssssssssssssnssssssnssssssnsssssnnsssssnssssssnnsns 6-29
6.1.7.54. MONETARY-DECIMAL-POINTceetttiiiiissssnneenisissassesssssssssssssssssssssss 6-30
6.1.7.55. MONETARY-THOUSANDS-SEPARATORcceetttiiiiiisssnnnneniiisssssssnsssssssssssssssssessssssssssssssssssssssssssssssssssssss 6-30
6.1.7.56. NUMERIC-DECIMAL-POINTcuutreiiiiiiissssnneenisisssnsessssssssssssnssssssssss 6-30
6.1.7.57. NUMERIC-THOUSANDS-SEPARATORcccectititmniiiinnncnienneiiensieiisnsiosssnssesssnssssssnssessssssssssssssssnssssssnnsss 6-30
6.1.7.58. NUMVAL(SEFING) c...eeuuueeeeririeiccrssnrensesssssssssnseesesssssssssnssssssssssssssnnsesssssssssssnnsesssssssssssnnsesssssssssssnnnassssssas 6-30
6.1.7.59. NUMVAL-C(SLring [, SYMBOI 1)..euueeeeiiiiiicireereeiiiiiicssnnneesisssscsssnnssesesssssssssnnsessessssssssnnsessessssssssnnnsasssssns 6-31
6.1.7.60. NUMVAL-F(string)
(30 My =3 I T 0 (o T 7 o T
6.1.7.62. ORD-MAX(€AAr-1 [, CAAr-2] ...) coceeiiiiiiiissneeeiiiiisisssnnseesisissessssssssssssnsassssssss 6-32
6.1.7.63. ORD-MIN(Char-1 [, CRAr-2] ...) coceeeiiiiiiisnnreeiiiiissssnnnnenisisssssssnseesssssssssssssssssssssssssssssesssssssssssnsssssssssss 6-32
(0 0y 7 T 6-32
6.1.7.65. PRESENT-VALUE(rate, Value-1 [, VAIUE-2])cceeeeeeeeeeerirrrrrrrrrrrrrssnssnnnes 6-32
6.1.7.66. RANDOM [(SEEA)] -evvirreruerriisruninisssnnisssssnnsssssnsssssssnesssasessssssssssssanes 6-32
6.1.7.67. RANGE(NUMDBEr-1 [, NUMBEI-2] ...) cueeeeeereiiririerrrerssserssnsnnne 6-33
6.1.7.68. REM(number, divisor)
6.1.7.69. REVERSE(SEFING)...ccceerrurrerirriiissssneenississsssssnssessesssssssssssnnsesssssssssssnnsassssssss
6.1.7.70. SECONDS-FROM-FORMATTED-TIME(fOrmat, time)cccovvvureeririissssssnnnenniisssssssnnsesssssssssssssssssssssas 6-33
6.1.7.71. SECONDS-PAST-MIDNIGHTcuuueiiiiiiiiiiinnnneeniiiisssssnnseenisissssssssssesssssssssssssessssssssssssnsessssssssssssnssssssssss 6-33
6.1.7.72. SIGN(NUMDBEL)......uuueeeeeeereierrrerrrrrreessesssnnne 6-33
6.1.7.73. SIN(ANGIL) «eeeeeeeeeeeeeeeeeieieiecrrnneeetessesesssnnseesessesessssnssesesssssssssnssessssssssssnnssesssssssssssnnsessssesssssnnnsssssssas 6-33
6.1.7.74. SQRT(NUMDBEN) «..ccovvnreriiiineiriisneiiiissnisisssssissssesssssssessssssssssssssssssssssssssssassssssssssssssssssssssasessssssssssssanss 6-33
6.1.7.75. STANDARD-DEVIATION(NUMBEr-1 [, NUMBEI-2] ...) .uuceeeeeeerrrrerrrrrrrrrrrsssssssssssssssssssssssssssssssssssssssnsnnes 6-33
6.1.7.76. STORED-CHAR-LENGTH(SEFING) «.evveeririiierrsnnreeiiiiiisssssnneesisisssssssnssssssssssssssnnsesssssssssssnnsesssssssssssnnssssssssss 6-34
6.1.7.77. SUBSTITUTE(string, from-1, to-1 [, from-n, t0-N])......ccceeerirrrrriiiiirrirssssssssssssssssssssssssssssssssssnsnnnnnnnnnes 6-34
6.1.7.78. SUBSTITUTE-CASE(string, from-1, to-1 [, from-n, t0-N]).....ccccceeeerirrirrririrrieiisissssssssssssssssssssssssssssnnnnns 6-34
6.1.7.79. SUM(NUMBEIr-1 [, NUMBEI-2] ...) ceeeeeeieeiererrrrrrrrrrsrssresssnsnnes 6-34
6.1.7.80. TAN(GNGI) «...uuvvviriinniiiiinniriissnnisissssnisisssessssssesssasessssssssssssanns 6-34
6.1.7.81. TEST-DATE-YYYYIMIMIDD(AALE) ...ccoeeeruririsssunsrssssnessssssnsssssssssssssssssssssssssssssassssssssssssssssssssssasssssssassssssanss 6-34
6.1.7.82. TEST-DAY-YYYYDDD(ALE)ccrcurrrirruririsssnnisssssnessssssnssasssssssassssssanss 6-34
6.1.7.83. TEST-NUMVAL(SEIING) «cevvvrrrrerrrrnneeniiiiisssssnseesesisssssssssssssssssssssnssssssssssssssnssesssssssssssnsesssssssssssnnsassssssss 6-34
6.1.7.84. TEST-NUMVAL-C(SLring [, SYMBOI]) «..euuunniiiiiiieiiiiiicesisssissesssnssnsssnnnnes 6-34
6.1.7.85. TEST-NUMVAL-F(SEriNg)......cceeerrrurrriiriiiirssnreeniiiissssssnseesssisssssssnssssssssssssssssssssssssssssnnsesssssssssssnnsassssssss 6-35
6.1.7.86. TRIM(string[, LEADING | TRAILING])eeiieerreeiiissneriissnnesisssnnssssssnnsssssnssssssasssssssssssssssnssssssasasssssnssssssanes 6-35
6.1.7.87. UPPER-CASE(SIIiNG)ccevtiiiiiiisrrunreniiiniisissnnenniiisisssssssessssissesssssssssssssssssssssss 6-35
6.1.7.88. VARIANCE(nUMber-1 [, NUMBEr-2] ...} cccccveeeeiiiiiiiiiineieiiiiisisinnseesisissssssssssesssissssssssssesssssssssssssssssssssns 6-35
6.1.7.89. YEAR-TO-YYYY (VY [, YY-CULOSF]) cevveeriiiiiiiinnreiiiiiiiiiinneeniiiinsssnnseessssssssssssssessssssssssssssesssssssssssssssssssssas 6-35
6.1.8. SPECIAI REGISTEIS ...ceeeeeeeeiiiiiiieiieeiceierireriaeseessreeeenassseesseeeenasssssssseseennnssssssssesennnsssssssseesnnnssssssssesennnnssssssnnnes 6-19
6.1.9. Controlling Concurrent AcCess t0 FileSccoiiiieieeeiiiiiiiiiiirceierrreeneeseeessesernnsssseesseeennnsssssssseeennnnssssssnenes 6-13
(o0 = 0 O L= 3] 4 T T Y- ST 6-14
6.1.9.2. RECOId LOCKINGciiiiieeieeccciiiiieiienccees s reesiesscesssesesnansssessseeennnsssssssseesnnasssssssseeesnnnsssssssssesnnnsssssnsnnsennnns 6-14
6.1.10. Common Clauses On Executable Statementsccvviiveeeiiiiiiiiiinnnnniniiiisseisssseesssssssssssessssss 6-15
6.1.10.1. AT END / NOT AT ENDcceecirererieeeseseesesnnssssnssssnsssssesssssssssnssssnsssssssssasssssnssssssssssesssnssssassssasssssssssnnes 6-15
6.1.10.2. CORRESPONDING OPLioN ..cccccuuueeniiiiiiiiissneeniinisssssssssessssisssssssssessssssssssssssssssssssssssssssessssssssssssnssssssssss 6-16
6.1.10.3. INVALID KEY / NOT INVALID KEYcceeeeirrereeerrrecessssneeeeeesesssssssssesesssssssssssssssssesssssssnsessesssssssssnssssssssns 6-17
6.1.10.4. ON EXCEPTION / NOT ON EXCEPTIONcceeeetrrreeerrrsneeeeeereesssssnnsesessessssssssssssssssssssssnsessssessssssnnsssssssnns 6-17
6.1.10.5. ON OVERFLOW / NOT ON OVERFLOW.....cceetttiiieeerrrneeeeeeeessssssnseeeessesssssssssssssssssssssssssssssesssssssnssssssenes 6-17
6.1.10.6. ON SIZE ERROR / NOT ON SIZE ERROR......cceetttrrieeerrrneeeeerressssssnseesessesssssssssssssssssssssssssssssesssssssnssssssssns 6-18
6.1.10.7. ROUNAING OPLIONS......ciiiiiiiiiiiiiiiiiisisisssnss 6-18
6.2. General Format of the PROCEDURE DIVISIONccceeeeeeeeeeeemeeeeeesmmssesssnnnns 6-1
6.2.1. General Format for SUDProgram ArguUmENtSeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeessns 6-1
6.2.2. General Format for DECLARATIVES ProCEAUIES.......ccceeeeeeeeeeeeeeeeeeeeeeneesessessnsnnnns 6-2

11FEB2012 Version iv

GNU COBOL 2.0 Programmers Guide Table of Contents

6.3. PROCEDURE DIVISION Sections and Paragraphseeeeeeeeeeeeeeeeeeeeeemmmmmeemmsessssssmssnss 6-2
(23 3\ LR 0(0 1210 T IR - =T 4 =T | N 6-19
L e R Y 0 5 =3 = R 6-35
6.4.1.1. ACCEPT Format 1 — Read from CoNSOoleccoriiieeemeiieiiiiieciecceesnteeeneeseeeeseeennnsssseesseessnnsssssssssesennnns 6-35
6.4.1.2. ACCEPT Format 2 — Retrieve Command-Line ArgUmENtScccceeeeriiiiisisnnneeiiiiiissssnnnessnissssssssseesssnes 6-36
6.4.1.3. ACCEPT Format 3 — Retrieve Environment Variable Valuesccoouveereeeeiriiieieecccennnreeeeencceeeeeeennnes 6-36
6.4.1.4. ACCEPT Format 4 — Retrieve FUll-Screen Dataccccceeiiiiiiiiiiiissssissnes 6-37
6.4.1.5. ACCEPT FOrmat 5 — RetrieVe Date/TiMecccceeerreeeiirnreeeeiieiesssnnseeessessssssssseeesssssssssssssessesssssssssssssssses 6-39
6.4.1.6. ACCEPT Format 6 - Retrieve Screen INformationccccceviiiiiiiiiiiiiiissisisssssssssssssssssssssssssssssssssssssssnnes 6-40
6.4.1.7. ACCEPT Format 7 — Retrieve Run-Time INformationccceeeeeeceiiiiieeieeiccenniieencnncceesseeennsssssesseesnnnnes 6-40
L0 307 2 Y 0 R 6-42
6.4.2.1. ADD FOrmat 1 — ADD TO....cciteuiiiieeniiinneieiiensieiiensesisnsesisnsesssnssssssnssessssssssssnsssssssssssssssssssnnsssssnssssssnnsns 6-42
6.4.2.2. ADD FOormat 2 — ADD GIVING......ccciiiitmniiiinneiiiieneieiiensieiiensiesiensiestsnsessssssessssssssssssssssssssssssssssssnssssssnsnns 6-42
6.4.2.3. ADD Format 3 — ADD CORRESPONDINGcccceeiiiiiiiririisssssssesssnes 6-43
B.4.3. ALLOCATEccceeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeeeeeeeessesseeseesesssseseesesssesssssssssesssnnnnnnnnnnnnnnnnn 6-44
Lo T Y I I =1 RN 6-45
Lo BT o Y RN 6-46
B.4.6. CANCEL ...ccceeveeeeiiiriereeieeeeeeeeeeeeeeeeesssssessnss 6-49
B.4.7. CLOSEccceetiiiiitieeeetetttteeeeseeesseseseesssnss 6-50
6.4.8. COMIMITcceeiiiiiiiiiteeiiieieeeeeeeseeesesesssessessssssessnss 6-51
6.4.9. COMPUTEcceeeeeeeieeiieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeereeseeterseseeeeeeeseeeeeseeeseesessnnnnnnnnnnnnnnnnne 6-52
6.4.10. CONTINUEccceeeeieieeeeeeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeeereereereerereeeseeeeeseesessnssnnnnnnnnnnnnnnn 6-53
(o0 e B R 0 T {1 =3 3RS 6-54
Lo by 2 T o 17\ RN 6-55
6.4.12.1. DISPLAY FOrmat 1 — “UPON “dEVICE"cceerriiiiiiiiiniiiiiisiisssnss 6-55
6.4.12.2. DISPLAY Format 2 — Access Command-Line Arguments.........ccoceiiiiiiiisssnes 6-55
6.4.12.3. DISPLAY Format 3 — Access or Set Environment Variablescccceiiiiiiiiininininnnnnnnnnnnnnnnnnnnnnnne, 6-56
6.4.12.4. DISPLAY Format 4 — Screen Datacccceiivieiiiimieiiiiniiiiiniiiiiniiiiiiiiiiisiiissiisssimsssimsssimssssssssses 6-56
(o0 T 30 TV | T RIS 6-58
6.4.13.1. DIVIDE Format 1 — DIVIDE INTO......cceeeiieeireeeieeeessessssesssnnnnnnns 6-58
6.4.13.2. DIVIDE Format 2 — DIVIDE INTO GIVINGcccceeiiiiiieeieesssnnes 6-58
6.4.13.3. DIVIDE Format 3 — DIVIDE BY GIVINGccccoiiiiiiiiiiiiiiisisss 6-59
B.4.14. ENTRY ..ceiiiiiiiiiiiieieeetteteeeeeeeeeeeessnnns 6-60
B.4.15. EVALUATEcccetiiiiiiiiieetieteeteeteeeeesssssesssnssssssnnss 6-61
B.4.16. EXIT..ciieiiiiiiiiiiiieieieetieieeeeeeseseesesessssssssesssnssnsssnnns 6-63
B.4.17. FREEceeeiiiieiiiiiieiiiiieiiiineiiienesisienesesienssssiessssstensssstessssstessssssssssssssssssssssssssssssssssssssstsssssssssssssssnnsssssnnsns 6-65
6.4.18. GENERATEcccceteieeiieiieeeteeeeeeeeeeeeeeeeeeeeeeeeeeereeeeeeeeeeeeeeeeeeeeeeeseeesseessnssnnnnnnnnnnnnnnn 6-66
6.4.19. GOBACKcceeeeieeeeeieeieeeeteeeeeeeeeeeeeeeeeeeeeeeeeerrereeererereereeeeereeeeeeseeseessnsnssnnnnnnnnnnnne 6-67
(230 B 0 I c{ 0 I 1 0 LN 6-68
6.4.20.1. GO TO Format 1 — Simple GO TOccciiiiiiiiiiiiiiiiiiisiisssnss 6-68
6.4.20.2. GO TO Format 2 — GO TO DEPENDING ONccciiiiiiiiiiiiiinsiissnes 6-68
L0 s R | N 6-69
6.4.22. INITIALIZE......ccuciiiiiuiiiieniiiieeiiiieeeiienssiiiesssosiesssesiessssstessssstssnsssssnssssssnnnss 6-70
6.4.23. INITIATE ...ccuiiiieiiiiieiiiiiieiiiieeiiiesesiiiesssittesssestesssestensssstessssstessssstsssnnsssssnnsns 6-73
6.4.24, INSPECT ...ccuiiiieiiiiiniiiieeiiireeiiienesiiiesssittessssstenssestessssstsssssstsssssstsnsssnsssssnnsssssnnsns 6-74
6.4.24.1. TALLYING Clause Syntax, Rules and Operationccoeeeeeeeciciiiiieeeenesccsnrieeenesssssesseeeennsssssssseesennnes 6-74
6.4.24.2. REPLACING Clause Syntax, Rules and Operation.........cccccciiiiiiiiiiniinininissnns 6-75
6.4.24.3. CONVERTING Clause Syntax, Rules and Operationccccceeiiiiiiiiniisiissnns 6-76
6.4.24.4. INSPECT Region Clause, Rules and Operationccccccciiiiiniiiiiiiiiiiiisssnes 6-76
6.4.25. IMIERGEccuuiiiieiiiiiieiiiiieiiiieeiiieeeiiiiesssitiesssosiesssestensssstessssstessssstsnsssnsssssnssssssnnsns 6-78
6.4.26. IMIOVE.......ccceeererteseeessesesssnssnnnnnnnnnnnnn 6-80
6.4.26.1. MOVE Format 1 — Simple IMOVE........cccccciiiiiiiiiiisiss 6-80
6.4.26.2. MOVE Format 2 — MOVE CORRESPONDING........ccccceieittmniiiienniiiieniciisnieimsssieimssssissssisssssssssssnssssns 6-80
B.4.27. IMIULTIPLYceeiiiiieieiiieieeeeteeeeeeeeeesssnssnnnnnnnnnnnnn 6-81
6.4.27.1. MULTIPLY FOrmat 1 — MULTIPLY BY.....ccciiiiiiiiiiiiiiiinssnss 6-81
6.4.27.2. MULTIPLY Format 2 — MULTIPLY GIVINGccccciiiiiiiiiiiiiissnss 6-81
6.4.28. NEXT SENTENCEccccetiiiiiiiiiieiieeeeeeeeeeeeeeeeesseessesssnnsnnnnns 6-82

11FEB2012 Version v

GNU COBOL 2.0 Programmers Guide Table of Contents

[L TR0] 2 = 6-83
6.4.30. PERFORIMccoiiiiunriiiiiiiinisnneeeninisssssssssesssnnsssssssss 6-85
6.4.30.1. PERFORM FOrmat 1 — ProCeduralcccccciiiiiiiiiiiiiniisiisss 6-85
6.4.30.2. PERFORM FOrmat 2 — INliNE.....cccciiiiiiiiiiiiiiiiinisisississs 6-88
B.4.31. READciiiuiiiiiieiiiiiiniiiiensiiisnesosienssesienssostsssssstenssessenssssssnssssssnssssssnsssssanssssssnssssssnssssssnsssssnssssssnnsssssnnsssssnnsns 6-90
6.4.31.1. READ Format 1 — Sequential READccccciiiiiiisisisss 6-90
6.4.31.2. READ Format 2 — RaNdom REad.........cccerrvumrriiiiiiiisisnnnneniiiiissssnseesisissssssssessssssssssssssesssssssssssssssssssssas 6-91
6.4.32. READY TRACEcuuttiiiiiiiiiinnneetiiiiissssssssess 6-93
6.8.33. RELEASEccoooiiunriiiiiiiiiinnnneeiiiisisssssssesssessssssssssssssessssssssssnnssssssssss 6-94
6.4.34. RESET TRAUCEuciiteiiiiieiiiieniiiieeiiienssiiiensiosisnssesienssostsnssestsnssesssnssssssnssssssnsssssssssssssssssssssssssssnsssssnsssssannsns 6-95
6.4.35. RETURN .. .ccuiiiieiiiiiniiiiieiiiieeitieneetienssesienssesienssestenssssssnsssstsnssessanssssssnssssssnsssssanssssssnssssssssssssnssssssnnssssannsns 6-96
6.4.36. REWRITEcoeuuiiiiiniiiieeiiiiieeiiinneiiienssosiensosisnssestenssssssnssssssnssesssnssssssnssssssnsssssssssssssnssssssssssssnnsssssnsssssannnns 6-97
6.4.37. ROLLBACKcttuuiiiitniiiieniiiieniiiemseiiensesisnssosisnssosisnssssssnssestsnssesssnssssssnssssssnssssssnsssssssssssssssssssnssssssnssssssnnsns 6-98
6.4.38. SEARCH
6.4.38.1. SEARCH Format 1 — Sequential S@arch........ccccccciiiiiiiiiiiiiiiiscccscssssssscsssnnes 6-99
6.4.38.2. SEARCH Format 2 — Binary, or Half-interval Search (SEARCH ALL).......ccccceeerrririirrrrirrrscnsssssssssssnnnnns 6-100
L 0 1 TR = R 6-102
6.4.39.1. SET Format 1 — SET ENVIRONMENTuuuuemriiiiiiiiiiinneeiiiiiissisnseesiiissssseessisssssssseesssssssssssssesssssses 6-102
6.4.39.2. SET Format 2 — SET Program-POINterccceeiiiiiiiiimmniiiiniiiinnmniiiiiiiinimmimmsmssiismssssssin 6-102
6.4.39.3. SET FOrmat 3 — SET ADDRESS.......ccccitiiiiiiinmmeiiiiiisiiineeeiiiiiisssssseesssssssssseesssssssssssseesssssssssssssssssssses 6-102
6.4.39.4. SET FOrmat 4 — SET INU@X...cccerrrurreiiiiiiisssnnneeniiisisssssnsesssssssssssssssssssssssssssnsssssssssssssnsssssssssssssnnssssssssss 6-103
6.4.39.5. SET FOrmat 5 — SET UP/DOWNceerierreeriissneriessnnesssssnesssssnnesssssnssssssnnesssssasesssssnssssssanesssssnsessasanns 6-103
6.4.39.6. SET Format 6 — SET Condition Name........ccccceviiiiiiiiiiiiiiiniiiniinnninnsnnnnssssssssssssssssses 6-104
6.4.39.7. SET FOrmat 7 — SET SWICR c...cuuueeriiiiiiiiineininiiincnneetnssnsssssnesssssssssssssnnsssssssssssssnssssssssssssssnnnsessssnss 6-104
6.4.39.8. SET Format 8 — SET ATTRIBUTEcccceiivmmriiiiiiiisiinnneeiiiisissssnsseessas 6-104
B.4.80. SORToueriiiiiiiiiiiinreeeiiiisisissssseettisssssssssseesssssssssssssssssssssssssssssessssssssssssssessssssssssssssessssssssssssssensssssssssssnsenss 6-105
6.4.40.1. SORT Format 1 — File-based SOrt..........ccovveeiiiiiiiiiiieeeiiiiiiiiiiinieenninnsneeessssssssssssse s sssssnssessssses 6-105
6.4.40.2. SORT FOrmat 2 — Table SOrt.......cceiiiiiiiiiiieiiiiiiiiiieeeniiisnnsees s ssssse e s s s s s snnssessssses 6-107
B.4.41. START ...ueereiiiiiiiiiirnererieiisissssnnseestsssssssssnsesssssssssssssssesssssssssssnssesssssssssssnssesssssssssssnssesssssssssssnnsesssssssssssnnsaans 6-108
B.8.82. STOP ...ceeeeeiiiiiiiiiiieeeettiiisissssnnstesssssssssssnsssssssssssssssssessssssssssnnssesssssssssssnssesssssssssssnnsesssssssssssnnsesssssssssssnnsaans 6-109
6.4.43. STRING ...cceeiiiiiiiiirneeetiiiiiissssnnseestsssssssssssesssssssssssssssesssssssssssnssesssssssssssnssessssssssssssssesssssssssssnnsesssssssssssnnsanns 6-110
6.4.44. SUBTRACTooeiiiunereeiiiisissineeeeisiissssssssseesssessssssssssssssessssssssssssnssnns 6-111
6.4.44.1. SUBTRACT Format 1 — SUBTRACT FROM.........ccoeiirumreniiiinissisnnnnnniiissssssssseessisssssssssssesssssssssssssssssssses 6-111
6.4.44.2. SUBTRACT Format 2 — SUBTRACT GIVING........cccoevvmrrriiiisissssnnnniiiisssssssseesiissssssseesssssssssssssssssses 6-111
6.4.44.3. SUBTRACT Format 3 — SUBTRACT CORRESPONDINGccoovmmreriiniissssnnnennsiissssssnnneesssssssssssssesssssses 6-112
B.4.45. SUPPRESS.......cccoirurretiiiiiiiissneetetiiissssssssesssssssssssssssessssssssssssssesssssssssssnssessssssssssssssesssssssssssnnsesssssssssssnnssans 6-113
6.4.46. TERIMINATEcciiieerttiiiiiiisneeettisiisssssnnsesssssssssssssssssssssssssssnssssssssssssssnssesssssssssssnnsesssssssssssnnsasssssssssssnnnsens 6-114
6.4.47. TRANSFORIMcuuueeiiiiiiiiiiineeeeiiiiisssssnnseessssssssssssssessssssssssssssesssssssssssnssesssssssssssnnsesssssssssssnnsesssssssssssnnssans 6-115
6.8.48. UNLOCK ...ccooiiiiiiirnnerriiiisissssnnseeniiisssssssssessessssssssssssssesssssssssssnnssnss 6-116
6.4.49. UNSTRINGccooiinrriiiiiiiiiiinntttiiiisississsesssesssssssssssassessssssssssssnssens 6-117
6.8.50. WRITEcceeiiiiiiiiiinneeiiiiinissisnnsesississsessssssssssssssessssssssssssssesssssssssssnnssnss 6-119
7. SUB-PROGRAMMING WITH GNU COBOLercrrcrrcerscsrssssssssssssssmsssmsssssssssessmsssmsssasssmsssssenns 7-2
7.1. Subprograms, Subroutines and User-Defined FUNCLIONSccoiriiiieeeciiiiiiieicerccs e see s s s e eesnessseesseeennnnssanns 7-2
7.2. Specifying and Using Alternate ENtry POINTSccceeeeeiiiiiiciieccciirireeiceessese s s seencessse s s e e sennnssssssssesennassssssssenennnnssnnns 7-2
7.3. Dynamic Versus StatiC SUDPrOSramss...........eeeeeeeeeeeeeemmeememeeeeeeeesesmmmsssnssssnnnnns 7-2
7.4. SUbProgram EXECULION FIOWcceeeeeeeeeeeeeeeeeeeeeeeeeeeemeemeemeeeesssnnnns 7-3
7.4.1. SUbrouting EXECULION FIOWccciiiiiiiiiiinnniiiiiiiiiiinnniiiiiisissssensssisssssssssessssssssssssssessssssssssssssesssssssssssnssessssssss 7-3
7.4.2. User-Defined FUNCtion EXECULION FIOW.........ccciiiiumeiiiiiiiiiniinniiiiiinisnnnnnsnsissssssssesssssssssssnssesssssssssssssssssssssas 7-4
7.5. Sharing Data Between Calling and Called Programs........ccceeeeecciiiiiieeeeeceesiieeennnssscesseeeenmsssssssseesennsssssssssesesnnsssnnns 7-5
7.5.1. SUDPrOSram ArSUMENTES c.ccccevviieeeieieeieeeeeeeeeeeeeeeeemmemeemeememmmmsess 7-5
7.5.1.1. Calling Program Considerations.........ccceeiiiiiiiiiiiiiiiississsns 7-5
7.5.1.2. Called Program CoNSIiderationsccccciiiiiiiiiiiiiiiississnsns 7-6
7.5.2. GLOBAL Data HEMS c.cccciiiiiiiinnereiiiiiiisisnnseenisisssessssssssssssssesssssssssssnsssssssssss 7-6
7.5.3. EXTERNAL Data ItEMS ..ccceciuuueeriiiiiiiiiisnneeiiiisiisisnneesssissessssssssssssssssssssssssssssssssssssss 7-7
7.6. Nested SUDPIrOSramseeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeesessssssesssnsssssssssssssnnnnnnnnns 7-8
7.7. Recursive GNU COBOL SUDPIrOSIramSceeeeeeememeeemmmmmmmmsmmsmss 7-8

11FEB2012 Version vi

GNU COBOL 2.0 Programmers Guide Table of Contents

7.8. Combining COBOL and C PrOZBramsceeeeeeeeeeeeeeesesesmssnsssssssssssssnnnnns 7-10
7.8.1. GNU COBOL Run-Time Library REqUIr€mMENtS.......ccceeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeessnns 7-10
7.8.2. String Allocation Differences Between GNU COBOL and C.........ccccvveereriiiiiisssnnneeniiinisssnsseessisssssssseesssns 7-10
7.8.3. Matching C Data Types With GNU COBOL USAGESccccceeeeerreemmeememeeenmmemmsmmsss 7-10
7.8.4. GNU COBOL Main Programs CALLINg C SUDPrograms........ccccceeiiiiiiisunereniiisisssssnseenssisssssssseesssssssssssssssssssses 7-12
7.8.5. C Main Programs CALLIng GNU COBOL SUDPrograms........cccceeeiiiissssnneeeiiiissssssssseesssssssssssseesssssssssssssssssssnes 7-13

8. THE GNU COBOL SYSTEM INTERFACE.......ccccicunmmmmnmmsnmssmssnissssssssssssssssssssssssssssssssssssssassnssns 8-1

8.1. Using the GNU COBOL CoMPIiler (CODC)....cccciiiriiiiiiiiiiiiiiisiiisisssnsssnnes 8-1
= 00 T R 1 T [T 4 T N 8-1
8.1.2. SYNtAX ANU OPLIONS ceceririiiiiiiiiiieinieeeeeeeeeeeeeereeeeeeeeeesesmssmesssssess 8-1
8.1.3. ComPiling GNU COBOL PrOSramsccceeereeiiiiissssssnneeisissssssssssesssissssssssssessssssssssssssesssssssssssssssssssssssssssssssssssses 8-3

8.1.3.1. Compiling Directly-Executable GNU COBOL Programs.........ccccceeererssnsns 8-3
8.1.3.2. Compiling Dynamically-Loadable GNU COBOL SUbPrograms..........ccccccceeeieieisessssssssssssssssssssssssssssssnsnnnes 8-3
8.1.3.3. Compiling Static GNU COBOL SUDPFrOZrams........ccccceeeriiriisessnses 8-3
8.1.4. Important Compilation-Time Environment Variables............eeesessesssssssnnne 84
8.1.5. Locating Copybooks at Compilation TiMeccceeeeeeeeeeeeeeeeeeeeeeeimeeeeeseeeess 8-5
8.1.6. Using Compiler Configuration Filescceeeeeeeeeeeeeemenmeieeeeeieeeeeeeieeeeeeeeeseeesemsesss 8-6

8.2. RUNNING GNU COBOL PrOSramsccceeuuuiiiiiiimnemnssssssssimmsssssssssssssmsss 8-7
8.2.1. Executing Programs DIr@CElYceeeeeeeeeeieeeeeeeieeeeeieeeeeeeeeeeeeeeeeeeeeeeeeseeseesemmsessesssssssssssssssssssssssssssssssssnsnsnnnnnnns 8-7
8.2.2. Using the “cobcrun” ULIlItYcceeeeeeeeeeeeieeiieiieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeseeesessesessssssssssssssssssssssssssssnssnnnsnnnnnnns 8-8
8.2.3. Program ArUMENTESciieuiiiiieiiiiieeiiiiieeiiiieniiiieneiiienesiiieneiiiensssiensssiensssisnssstensssstsasssstsssssstsnsssstssssssssnnsss 8-9
8.2.4. Important Execution-Time Environment Variables..........ceeeseeeeesssesssssssanee. 8-9

8.3. BUilt-In System SUDIrOULINES.......ccoeiiiiiiiiiiiiiiinininiiisiisssississnss 8-11
8.3.1. “Call by Name” ROULINESccccveieiiiiiieeiieeeeeeieeeeeeeieeeeeeemeemeemsssnss 8-11

8.3.1.1. CALL “CSCALLEDBY” USING PrOg-N0ME-QreQcuerereerereresseressessessesessssssssessssssessesesssssssssssssesessssesases 8-11
8.3.1.2. CALL “CSCHDIR” USING directory-path, rSUILueeeveeevreeeereeiereeresnessssesessesessssessssssssessssesessssesanes 8-12
8.3.1.3. CALL “CSCOPY” USING src-file-path, dest-file-path, 0ccevceereereerrerrsneressseeressssessssssesssssssessessnns 8-12
8.3.1.4. CALL “CSDELETE” USING file-pAth, O......ccccecerecrueeereerereereseesssnessseesessesessssssssessssesessesssssssssssssssessssessnees 8-12
8.3.1.5. CALL “CSFILEINFO” USING file-path, file-iNfoccececerereresrereeseereseesesesssnsssssesessessssessssssssssesessesenes 8-12
8.3.1.6. CALL “COGETPIDccoceeeeereesreesreesseesseesseesssessssssssssssssssssessssessssssssssssssasssassssessassssessesssasssasssaessesssaassens 8-13
8.3.1.7. CALL “CSJUSTIFY” USING data-item, “jUSEIfiCatiON-tYPe”coerereerererresrnereseeieseesessssssssessssesesssseanes 8-13
8.3.1.8. CALL “CSMAKEDIR” USING dir-pAth......c..eeeeeerveerseenseesseesseesseesseesseessesssasssssssssssasssssssssssasssasssasssesssssssens 8-13
8.3.1.9. CALL “CSNARG” USING Grg-COUNE-FESUIL........ccueeeruerererrereesseereseeresaesesasessssesessesessssessssssssessssesessssesanes 8-13
8.3.1.10. CALL “CSPARAMSIZE” USING GrgumMENt-NUMBETccuvereerrcerrerrsnerresssserssssssesessssssssssssesssssssesssssnns 8-13
8.3.1.11. CALL “CSPRINTABLE” USING data-item [, CAGK J...c..ueeeceeeeceercceerceercseesessnescseesessesessesssssessssesessesennns 8-13
8.3.1.12. CALL “CSSLEEP” USING S€CONAS-EO-SIEEP «..eeeeereeereereerrerreereessneesssssessessssesssssssessssssssssssssesssssnsesssssnns 8-14
8.3.1.13. CALL “CSTOLOWER” USING data-item, BY VALUE cONVErt-IeNgth............ueeeeevcuereerreererssnereessnneressanns 8-14
8.3.1.14. CALL “CSTOUPPER” USING data-item, BY VALUE convert-Iength..............cccceeveerveesseesseesseesseessensaens 8-14
8.3.1.15. CALL “CBL_AND” USING item-1, item-2, BY VALUE byte-length............cccceeerriviisssnneeiiiisssssssnnnennnnnes 8-14
8.3.1.16. CALL “CBL_CHANGE_DIR” USING direCtory-pathccceevvvureeiiiisisssssnnneniiisssssssnsessssssssssssssessssss 8-14
8.3.1.17. CALL “CBL_CHECK_FILE_EXIST” USING file-path, file-iNfOcccevrrerereeeeerrrsesesessssssssesssssssssssssnenennes 8-15
8.3.1.18. CALL “CBL_CLOSE_FILE” USING fil@-RANGIEc.vvveeereeeeeererereseersessnsnsases 8-15
8.3.1.19. CALL “CBL_COPY_FILE” USING src-file-path, dest-file-pathceeeeeeeerrireeeeencceerrrreennnnscesseeeennnes 8-15
8.3.1.20. CALL “CBL_CREATE_DIR” USING Gif-POtH.....cecevevreererieeeeersresesessessssssssssssssssssssssssssssssssssnsssassssssnsnsnses 8-15
8.3.1.21. CALL “CBL_CREATE_FILE” USING file-path, 2, 0, 0, file-handleccceerrrviissssnnreriiinisssssnneennnnnnns 8-15
8.3.1.22. CALL “CBL_DELETE_DIR” USING dir-pathccccovvvueeeiiiiiississnnneninisisssssnssenisissssssssessssssssssssssssssss 8-16
8.3.1.23. CALL “CBL_DELETE_FILE” USING file-pAthccccovvuveeiiiiiiissssnnnnniiisiisisnsnessiissssssssesssssssssssssessssss 8-16
8.3.1.24. CALL “CBL_ERROR_PROC” USING function, program-pointerccceeeessrsssssssssssssssssssssssssssssssnes 8-16
8.3.1.25. CALL “CBL_EXIT_PROC” USING function, program-pointerccccccceeeeeerrrreennnnsseessseeennnssssssssssennnes 8-17
8.3.1.26. CALL “CBL_EQ” USING item-1, item-2, BY VALUE byte-length.............cccoovvrrriinsssssssssssssssssssssssssssssnnes 8-18
8.3.1.27. CALL “CBL_FLUSH_FILE” USING file-Randle..................erreeeeeenneeerrieeenennseessreeeennnsssesssseeennnssssssssssennnns 8-19
8.3.1.28. CALL “CBL_GET_CURRENT_DIR” USING BY VALUE 0, BY VALUE length, BY REFERENCE buffer 8-19
8.3.1.29. CALL “CBL_GET_CSR_POS” USING cursor-IoCn-BUfferccccocereiiiiiiiiiississssssssssssssssssssssssssssssssssssnes 8-19
8.3.1.30. CALL “CBL_GET_SCR_SIZE” USING no-of-lines, N0-0f-CoIscccceerrrriiiiririisissssssssssssssssssssssssssssssnnns 8-19
8.3.1.31. CALL “CBL_IMP” USING item-1, item-2, BY VALUE byte-length..............cccceeriiviisssnneeniiinssssssnnnennsnnnes 8-20
8.3.1.32. CALL “CBL_NIMP” USING item-1, item-2, BY VALUE byte-lengthccccevvriiiiiinissnsssssssssssssssssnnnns 8-20

11FEB2012 Version vii

GNU COBOL 2.0 Programmers Guide Table of Contents

8.3.1.33. CALL “CBL_NOR” USING item-1, item-2, BY VALUE byte-length............cccceeeriiiiisssnneeiiiinssssssnnnennsnnes 8-20
8.3.1.34. CALL “CBL_NOT” USING item-1, BY VALUE byte-Iengthceevriiiisirnnreiiiiiiissssnneeninnnsssssssssessssnes 8-21
8.3.1.35. CALL “CBL_OC_NANOSLEEP” USING nanoseconds-to-SIeepcccoevureerriviisssnneeeirinsssssnnneennnnnes 8-21
8.3.1.36. CALL “CBL_OPEN_FILE” file-path, access-mode, 0, 0, handlecccoerririsissssssssssssssssssssssssssssssnns 8-21
8.3.1.37. CALL “CBL_OR” USING item-1, item-2, BY VALUE byte-lengthcccceerriviisisurreeiriniisssnnnnennnnnns 8-21
8.3.1.38. CALL “CBL_READ_FILE” USING handle, offset, nbytes, flag, buffer...............coovvevvvumreerriiiisssnnnennnnnn. 8-22
8.3.1.39. CALL “CBL_RENAME_FILE” USING old-file-path, new-file-pathceerreeissrsnneeiiiiissssssnnnennsnenes 8-22
8.3.1.40. CALL “CBL_TOLOWER” USING data-item, BY VALUE convert-1engthccceevvumrerirrisissssnnnennnnnes 8-22
8.3.1.41. CALL “CBL_TOUPPER” USING data-item, BY VALUE convert-Iengthccoevvvvuneeriiriiissssnnnnnnnnnes 8-22
8.3.1.42. CALL “CBL_WRITE_FILE” USING handle, offset, nbytes, 0, BUffercccceerriviisirunreeiriiiissssnneennnnnnn. 8-23
8.3.1.43. CALL “CBL_XOR” USING item-1, item-2, BY VALUE byte-lengthccceerrviiiiurreeiiiniisssnnneennnnnes 8-23
8.3.1.44. CALL “SYSTEM” USING COMMANGuuuiiiiiiiiiiiiiiniiiisisss 8-23
8.3.2. “Call by Number” SUDIOULINESccceveeeeeeeeeeemmenmeeeeemeemeeemmmimeeemeeeeeemesessmssess 8-23
8.3.2.1. CALL X”91” USING return-code, function-code, binary-variable-argcccceeeeeerrrrrrerrrcrrrerescnnnnns 8-24
8.3.2.2. CALL X/EA” eueeeeeiiiiiiiiinneeesiiississssnnsesssnssesssssssssssansesssssssssssnnssesssssss 8-24
8.3.2.3. CALL X ES euueeeiiiiiiiiiineeeiiiiisssssnnsessssssssssssssssssssssssssnsssssssssssssnsssssssssssssssnssesssssssssssnnsesssssssssssnnssssssssss 8-24
8.3.2.4. CALL X”FA4” USING BYte, tADIE........ccccovveeerrnnreeiiiiiiisnnneeiiiiissssnsseesisisssssssssssssssssssssssesssssssssssssssssssssss 8-25
8.3.2.5. CALL X”F5” USING BYte, tADIE........ccccovviinnnnreeiiiiiiiinnneeiiiiissssseesnssssssssssssssssssssssssssessssssssssssssssssssses 8-25
8.4. BiNary TrUNCAtION ..ccuuuuiiiiiiiiiiiiiiiiiiiiiitneiisisiitnesssssssssirmssssssssssssnsssnsnsssssss 8-25
9. SAMPLE PROGRADMS ... eccrrcrcrsssssmessssssssmsssssssssmssssssmssssssassnssssssmssss ssnssmsssssnssssssassmssssssassasssnssmsnns 10-1
9.1. FileStat-Msgs.cpy — File STatus ValUeEs.........cccciieeiiiiiiiiiiiiiiscsssnsssnnnsnnnns 10-1
9.2. COBDUMP — A Hex/Char Data DUMP SUBFOULING..........eeeeeiiiieieiireeeetterececrrneeeeeeseesssssnnneeeesesssssnnseeessesssssnnnnenes 10-2
9.3. DAY-FROM-DATE — Determine Day of Week From @ Date.........cccceiiiiiiiiisissnss 10-11
9.4. GCic — an Interactive GNU COBOL Full-Screen Compiler Front-Endcccoeiiiiiniiinnssnnsnnssssssssssssssssssssssssssssnes 10-15
9.5. STREAMIO — A Utility Subroutine to Simplify Stream I/O.......ccceeceeeericreereciieeerecieeeeecseeesesssneesssssseesessnsessns 10-109
9.6. WINSYSTEM - Execute Windows Shell Commands (For Cygwin).......cccceeecevneeeeennnnne. Error! Bookmark not defined.
10. GLOSSARY OF TERMSiiictimimisnmsnisanisnisssssnsssssssssssssssssssssssssssssasssssssssasssnssnssnsssassnsssnssasssnssnnsans 11-1
0) . I
GNU FREE DOCUMENTATION LICENSE ... srrsrssrsmnsscs s ssssssssss s sesssmsssmssssssssssssssssmsssmssnnns IX
Figures
FIgure 1-1 - A SAMPIE TUI SCIEENeeeieeiiiiee ettt ettt e sttt e e ettt e e eette e e sttt e e e ssteeeeaasteeessaeeeesssaeesansseeessseaeeassanesansseeesnnsens 1-12
Figure 1-2 — General Format of @ GNU COBOL PrOSIramcc.ueieiiuieeeiiieeeeiieeeseetesesteeeesssseeesssseessssssessssssseesssssesssssseesnns 1-4
FISUIE 1-3 - FIGUIAtiVE CONSTANTS .cuuuiiiiiiiieiiciiiiieet ettt e e et e e e s s st e e e e e seabateeeeeeesassastaeeeesesassssbanaeeessesssssenneanens 1-8
FIBUIE 2-1 = COPY SYNTAX 1uuttiiiiiiiiiieieicieieie s s s s s s e s s e e e e e e e e e s e s e s nananansasnanaesssesssnsesesess 2-1
Figure 2-2 - REPLACE (FOIMAt 1) SYNTAXviiiiiiiiiiiiiiieeeeiieeeecite e e eettee e e sttt e e eeate e e eeabaeaesbaeeeesabeeeeessaeaesasseseeastsessessseaeasseaaans 2-2
Figure 2-3 - REPLACE (FOPMAt 2) SYNTAX c..uviiiieiiiiiieiiiee e et e eeeite e e ettt e e e sttt e eeetteeeeeaaaeeesbseseeaateeeeessaeaesbseaeesssessessaeaeasseaanns 2-2
FISUIE 2-4 - SSDEFINE SYNTAX 1iiiiiiiiiiiiiiiteieiieiitieeetee s eestteteeeesssseattateeeeesssssbasaeaeeessasssssaeeeesssasssssseseesssassssssneeesssessnssssneenes 2-2
FISUIE 2-5 = S>3IF SYNTAX 1iiiiiiiiiiiiiiiiciieeee ettt e ettt e e e s e sttt e e e e e s sa b et e e aeeee s ssbaseeaeeeesassstaeaeesesassstanaaaessesnnnssnnnenens 2-3
Figure 2-6 - >>IF constant-conditional-expression FOrMAtccciiiiiiiiiieiiee s e s e e e s aere e e snreeeeas 2-3
FIGUIE 2-7 = > SET SYNTAX 1uutttriiiiiiiiiiiiiteeteeeseittteeteessesouteeeeesssasasstareeeessssasssaneeasessssssssseeesesssasssssseseesssassssssneeesssesssnsssseeeees 2-4
FIGUIE 2-8 = >>SOURCE SYNTAX ..uuuuuuiiieieieieieieieseiesese s e sesesesese s e se s e s e s e s e s e s s e s s s e s e s e s e snsasasasasasasssssasasasasasasssnsssssssssssnsssnsessssssses 2-5
FIBUIE 2-9 = S TURN SYNTAX .ttt i se s e se s s s s s s s s e s e e s e e e e e e e e e s s e s e an s e sesnanansnsesssssesssess 2-5
Figure 3-1 - IDENTIFICATION DIVISION SYNTAX 1.uutieieieieieieieieieieieiesesesesesesesesesssesesesesesesssessses 3-1
Figure 4-1 - ENVIRONMENT DIVISION SYNTAX...uieieieieieieieieieieieieseiesesesesesesesesesesesesesssesessses 4-1
Figure 4-2 - CONFIGURATION SECTION SYNEAX .tttrruteriuieiiuierieeeieesiteeiteesteesseesireesseesaseessseesaseessseesusessnseesaseesseesssessnseess 4-1
Figure 4-3 - SOURCE-COMPUTER Paragraph SYNTAXc.cceeeciiieiiiieeeiieeeeeiieeesetveeestteeessaeeeessneaeessssessessseesnsssesssssesanns 4-1
Figure 4-4 - OBJECT-COMPUTER Paragraph SYNTaX.......ccueeieciiieiiiiee e siieeeesie e e setteeestveeessate e e sensaeeestaeeeesnaeesnnnneesssseseans 4-2
Figure 4-5 - REPOSITORY Paragraph SYNTAXuueeiiiiiiiiiiiiiie e e eeccitite e e e e e sttt e e e e e e eeaateeeeeeesesastaeseeeesesnstasseeaseesannsanneaaens 4-3
Figure 4-6 - SPECIAL-NAMES Paragraph SYNTaX......cccuciiiiiiiiee et e e e e ettt e e e e e ettt e e e e e e sesaataeseeeesesantaaseeseseesnsseneaaens 4-4
(R T gl A RV o] ot | W or-] [l @o Lo =TSP 4-5
Figure 4-8 - BUilt-In GNU COBOL DEVICE NAMIES...ciciiiiiiiiiiieeeeeiiitiieee e e e e sttt e eeeeesestateeesaeesesastaeseaeesasanstasseesssessasssseeeens 4-5

11FEB2012 Version viii

GNU COBOL 2.0 Programmers Guide Table of Contents

Figure 4-9 - The SPECIAL-NAMES "alphabet-name" ClaUSEccccuiiiiiiiiiieec st e e e eere e e sere e 4-6
Figure 4-10 - The SPECIAL-NAMES "class-Name" ClAUSEc.uuiiicuuiieeiiiie ettt et e e stre e e et e e seaae e e staeeeentaeeseanaeeesnnseeenns 4-6
Figure 4-11 - The SPECIAL-NAMES "switch-definition" Clauseccociiiiiiiiiiniieeie e 4-7
Figure 4-12 - The SPECIAL-NAMES "symbolic-characters” Clause.........ccocueiieeiiieiieeniieeee ettt 4-7
Figure 4-13 - INPUT-OUTPUT SECTION SYNTAX ..tttttitiiiiiiiititeieeeiiiiitee et e e e seiietteeeeeeseisteeeeeeesesasbteeeeeesesnnbaneeeessesaanseraeeeens 4-8
Figure 4-14 — File SELECT Stat@mMent SYNTaX.......eceiieiieiiiieniee ettt sttt sttt st e bt e st e st e e sab e s bt e sabeesnneesaneeenneens 4-9
FIgUIE 4-15 — FILE STATUS VaAlUES......ueiiiiiiiieeeiee ettt e cttee ettt e e e ette e e st e e e e sataeesensaeeesasaaeeesstaeesanssaeessseeeesssaeaeansseeesnnsnens 4-10
Figure 4-16 - SELECT “organization-options” FOr SEQUENTIAL FileScceciiiiiiriieeniienieesieesiieesieesreesieesseeessieessaeesnne 4-11
Figure 4-17 - SELECT "organization-options" for LINE SEQUENTIAL FileS.......ccuevviiriiiiriieiiiiieniiee e sieesieessieesieessnee e 4-12
Figure 4-18 - SELECT “organization options” FOr RELATIVE Fil€Sccoutiiiiiiiiiiiieiieeeiee sttt 4-13
Figure 4-19 - SELECT “organization options” FOr INDEXED FileSccccutiriiiiiiiiiiinieeeiee ettt 4-14
Figure 4-20 - 1-O-CONTROL Paragraph SYNTaX......coueieieeiiiiniieiieeeiee sttt ettt st e et e st e sbeesbeesneesbeesnneenane 4-15
Figure 5-1 - General DATA DIVISION FOIM@t......cioiieiiiiiiieniteeite sttt sttt e e st e et e st esabeesabeesaseesareeeaneesabeesnneens 5-1
Figure 5-2 - File Description (FD) and Sort Description (SD) SYNTaXccuueeieciiieiiiiee e ciieeeecre e e e e stre e e irr e e e eaae e e saveeeens 5-2
Figure 5-3- LINAGE-SPECified PAgE STFUCTUIEcoiciieeiiiiie ettt ettt ettt e e et e et e e e e ta e e e eata e e seasaaeesbbeeeenssaeeeeasaaeessrenaans 5-3
Figure 5-4 — Non-SCREEN SECTION Data Item Description SYNTaX.....cucieieieieiiiiiiiiieieieseisssssss s sess s sssssssssssssssssessesseeeeeee e 5-6
Figure 5-5 - Data Class-Specification PICTURE SYMDBOIS (A/X/9)..eeiuiiiiieitieeeee ettt ettt et s b e eveesveesareesaveesanee e 5-8
Figure 5-6 - Numeric Option PICTURE SYMDBOIS (P/S/V) weeviriiriiieeieieieiesiese sttt ettt te et e e s sesessestesnesneeneenees 5-9
Figure 5-7 - Numeric Editing PICTURE SYMDBOISooiiiiiiiiiieiieeeiee ettt sttt ste e s e s neesbeessneesane 5-10
Figure 5-8 - SigN-ENCOdING CharaCers.......ooiueiiiiiiieeeee ettt sttt sttt e st e st e st e sabeesabeeeseesabeesneenane 5-14
Figure 5-9 - Effect of the SYNCHRONIZED ClaUSEeeeeiuiieeeiieieeeiiee ettt e e ettt e e eette e e staeeeesttaeeeenataessasaeessnbaeaeenssaeesnnsanas 5-15
Figure 5-10 - Summary of USAGE SPeCITICAtIONSuiiiiiiieecciiee ettt e e et e e e e tte e e s eaae e e e s aba e e eenssaeeeenraeas 5-15
Figure 5-11 - SCREEN SECTION Data Item Description SYNTAX ..ccccceieieieieiiiiiiieiiieieie s sssssssssssesssesesssssssssesssesssssssssssssssnsnss 5-20
Figure 5-12 - The GNU COBOL Color Palette (WindowWSs CONSOIE)ccuuiieeiiiieieiiie ettt eee e et 5-21
Figure 5-13 - 01-Level Constant DeSCription SYNTaX.......coueiruiiiiiinieeiieeeiee sttt sttt s st e st e s beesneesabeesneesane 5-26
Figure 5-14 - 66-Level Data DeSCription SYNTaX......c.eiruiiiiiiriieiieeeiee st ettt ettt e st e st e sbee st e e sabeesabeesseesbeessneesane 5-28
Figure 5-15 - 78-Level Constant DeSCription SYNTAX.......cuiiieiiiieieiie e ctee e ettt e eeree e st e e e stee e s sare e e saaeaeesnbaeeeesseeesnseeas 5-29
Figure 5-16 - 88-Level CoNdition NAME SYNTaS......ccciuiiiiiieeeeiiieeeeiee e cree e estee e eeeee e e saaeesessteeessseeeesnsneaeesssaeesessseeesnnsees 5-29
Figure 6-1 - Reference Modifier SYNTAX........ccciii ittt e et e e et e e e e ta e e e e ate e e esabaeeesbaeeeestaeesensaeaessreaaans 6-5
Figure 6-2 — Unary “Minus” (=) OPErator SYNTAXccueeeiiiiieeeeiieeeeciieeeciteeeeiteeeeettreeesteeeeesateeeessaseessseseenssseesassseeesssreaaans 6-6
Figure 6-3 — UNary “PlUS” (+) OPErator SYNTAXcccuueeiiiiiieeeiieeeeeiieeesteeeeeitteeeeetaeeeesbeeeeesateeessssaeeesasseseenssseesasseessssrenaans 6-6
Figure 6-4 - Exponentiation Operator (¥* Or /) SYNTAXccceiierierieeie ettt te sttt saeesaeeaeentesseesaeesseenseenseas 6-6
Figure 6-5 - Multiplication OPerator (¥) SYNTaX.....cieicieicie e ciie st estee st erte e st e e e e st eete e steesabeesateesaseesateesnseesnseesnseenn 6-6
Figure 6-6 - DiViSiON OPErator (/) SYNTAXcueiieiieieeireeiteiee it e st eeteeeteeite et e eteesteesbeebeebeeasesssesaeesseeaseeseenseessesssesseenseensens 6-7
Figure 6-7 - Addition OPErator (+) SYNTAX .ic.eerierierieeierieieeste st ettt ete st e sttesteeteesbestesstesaeesaeesseenseenseensesseesseessesnsesnsens 6-7
Figure 6-8 - SUDLraction OPErator (=) SYNTAX ..ccuiiiiiiiee e ceiiee et e cte e e eerite e e e etee e e e taeeeesateeeeeasaeeesbseseessseeeassaessasreaaans 6-7
Figure 6-9 - Class CONITION SYNTAX ...uviiiiiiiiiiiiiieei ettt e e e e e e e st e e e e e e seaateeeeeeesesnsstaaseeeesassnstaaeeeeseesnnnrarnnaeens 6-9
Figure 6-10 - SigN CONItION SYNTAX....uiiiiiiiiiiiiiieei e e e e e st e e e e e serbataeeeeeesesanstaesaeeesasnstaneeeessesnnnsanneaaens 6-9
Figure 6-11 - USiNg SWItCh CONAITIONS ...cc.uviieieiiii ettt e e e e e e e st e e e e st e e e eante e e snaeeeesataeeeesnseeesnneeas 6-10
Figure 6-12 - Relation CoNAitionN SYNTAXuciiiiiiii e iiie ettt et e e et e e e et e e e st e e e e sata e e eensreeesnseeeesssaeeeesnseeesnnseeas 6-10
(AT {U TN T I T @ o1 o 11 =Yo I @o T Vo [uTo T o)Y 1 D S 6-11
Figure 6-14 - Negated CoNAition SYNTaX......ceiuciiii e iciee e et e st e e et e e s e tee e e saae e e e sstaeeesasteeesnsneeesssaeeeanseeennnsenas 6-11
TN gl N R Y o T Yol -l 2 =Y 4) A=Y SRR 6-20
Figure 6-16 - ROUNDED MODE BERAVIOLuuiiiiiiiieceiiieee ettt ettt e e e e ettt e e e e e s e s aaba e e e e e e e esnabaaeeaeesesnnntaaneaaens 6-19
Figure 6-17 - General PROCEDURE DIVISION SYNTAXuutiiiieeiiiiiiiiiiieeeeeiiiiiteeeeeeeseetsteeeeeeesesassseseesesesssssssssesssessnssssseeses 6-1
Figure 6-18 - Syntax of a PROCEDURE DIVISION USING ArUMENT ...ccccoeiiiiiiiieeeeeceiiiieee e e e e eeeiittee e e e e sesanbaeeeeeesessnsnaneeaens 6-1
Figure 6-19 - General DECLARATIVES ProCEAUIE SYNTAX ...cccccuurieriueeeeiiieeeeireeeseeeesessseesasssesessssnesesnssessessssessssssesssssseseans 6-3
Figure 6-20 - ACCEPT (Read from CONSOIE) SYNTAX....uiiiiiuiieeeiiiieieiiee e siee e ettt e seete e e sae e e e sstaeesenneeeesnseeeesssaeesennseeesnnsenas 6-36
Figure 6-21 - ACCEPT (Command Line ArgumENtS) SYNTaX.....c.ueieecueeeriieeeeiiireeeiteresiteesestneesesreeesssseesessssessesssssessnsens 6-36
Figure 6-22 - ACCEPT (Environment Variable Values) SYNTaX.......ccceeciiieeeiiiie ettt ettt e 6-37
Figure 6-23 - ACCEPT (Retrieve SCreen Data) SYNTaX... ..o iie e cciieeeecteeeeeitte e e ettt e e esteeeeeateeeesaseeeesabaeseesseeesnnsenas 6-38
Figure 6-24 - Screen ACCEPT CRT STATUS COUES ..cooiiiiiiieiee ettt e e e ettt e e e e e e esattaee e e e e sesanbaaeeeeeeesanabaseeaseeesnnssseneeaans 6-39
Figure 6-25 - ACCEPT (Retrieve Date/TimE) SYNTAX....ccvciiriieireeiireeeeeeireeeireeereeeireeeteeeiseeeeseeesseeesesssesetesessesensesenseeenns 6-39
Figure 6-26 - ACCEPT Options for DATE/TIME REIHEVAIcccueiiiiieiiiiieeeee ettt e st e e e s be e s ae e sbaesnee e 6-39
Figure 6-27 - ACCEPT (Retrieve Screen INformation) SYNTaXccceeeicieeeeiiiie e siee s esire e et e e s e e e srae e e enra e e enneeas 6-40
Figure 6-28 - ACCEPT (Retrieve Run-Time INformation) SYNtaXcccceccueeeeeiiiieieiee st s esee e eeree e see e e rae e et e e e 6-41
Figure 6-29 - RUN-Time EXCEPLION COUE VAlUBS......c.uviiiiiiie et eetes sttt ettt e st e e et e e e e nta e e s e e e e sntaeeeenntaeesnneeas 6-41

11FEB2012 Version ix

GNU COBOL 2.0 Programmers Guide Table of Contents

FIgUre 6-30 - ADD (TO) SYNTAX ceuutiiiiiiiieeiiiieeeeiteeeseteeeesteeeestteeessasaeeesssaeeeastseeeassseeessseeeasstaeeaanssseesasseeeasssseesassesennnsenes 6-42
FIgure 6-31 - ADD (GIVING) SYNTAX....uuttiiiitiieeiiiiieiitteeeiiteeeestteeesssseeessteesasstaeeeasseeesssessasssseesassssssssssssssssssseasssesesnssens 6-42
Figure 6-32 - ADD (CORRESPONDING) SYNTAX ce.uvteiurierieeireesteeiteesiteesteessseesseesseesssessssessssessssesssessssessssessssessssessssessnns 6-43
FIGUIE 6-33 - ALLOCATE SYNTAX...uttiiiitieiiiitieeiiitte et tee sttt st et sr et e s e bt e e s eaba e e e snat e e e sab e s e seasa e e e snaeesesnbaeesenreeesnraeas 6-44
FIGUIE 6-34 - ALTER SYNTAX ..tttiiiiiiiiiiiiet ittt sttt ettt e s et e e st a e s s et e s e ab e e e s eabre e e snae e e s s nbaeeseanbaeesnraeas 6-45
FIGUIE 6-35 = CALL SYNTAX 1..utiiiiiiiiiiiitiee ittt sttt st e s et e e st a e e s s et e s e ab e e e s eabr e e e smae e e s snraeesenbaeesnraeas 6-46
Figure 6-36 - Argument Format When CALLING @ SUDIOULINEcvuiiiiiiieecciiee ettt e e et e e e e e 6-47
FIBUIE 6-37 = CANCEL SYNTAX 11t s s s e s e s s s e s s e s s snsnsnsnsnsasasssnsnns 6-49
FIBUIE B-38 = CLOSE SYNTAX .uuuuiiiuiiiiiiieieieieiesesesess s s se s s e s e s s s s s s s s e s e s s s s s s s sa s sasasasnsssnnssssnsnsnnssnsnsnsnsnsns 6-50
FIUIE 6-39 - COMMIT SYNTAX....uttiiiiitieiiiiiiee ittt ettt e et e s et e e s et e e s et e e e ssb e e e s e abae e e sbne e e s snbaeesaanreeesnnaeas 6-51
FIgUre 6-40 - COMPUTE SYNTAX ..vvttiiirieiiiirieiiiitee et tee sttt sre e e e s e sib s e s eba e e e sna e e s e smb e s e s eabae e e snaeesesnbaeesenreeesnnaeas 6-52
FIUre 6-41 - CONTINUE SYNTAX...tttiiitiiiiiiiieiiitie ittt st e e e e s eba e s et e s e sb e e e s esae e e sbae e e e sabe e e senreeesanraeas 6-53
FIUIE 6-42 - DELETE SYNTAX 1eiiiiiiiiiiiiiiei ittt sttt s bt e s e e e e s a e e e sbae e e s sab e e e senreeesnraeas 6-54
Figure 6-43 - DISPLAY (UpPON CONSOIE) SYNTAX .uviiiiiiiieeiiiieeeiiee e eeiiee e ctteeeestte e e eetteeestaeeeesataeeeenstaeesssaeessssaeaeessaessnnsenas 6-55
Figure 6-44 - DISPLAY (Access Command-line Arguments) SYNTaX.......ccuveeeiiiieieiieeeiiieeeeciteeeeire e e srree e e srae e e earaeeeearaeas 6-55
Figure 6-45 - DISPLAY (Access / Set Environment Variables) SYNTaX.......cccviiieeeiieiiieeeiieeccieeeireeereeereeereeeereessteeesaee e 6-56
Figure 6-46 - DISPLAY (SCreen Data) SYNTAX .iccciiiiiiiee e iiiee e et e eeite e e stte e e ettt eesetaeeesabeesesstseesenssaeesssesessssssaeassaeesnssenas 6-56
FIUIe 6-47 - DIVIDE INTO SYNTAX .tiiiiuttttiiirieeiiitteeiittee st e s ettt e e sttt e st e s e st e e sessae e e snaeesssmreeesennneeesanneeeeanrenesannreeesnnneas 6-58
Figure 6-48 - DIVIDE INTO GIVING SYNTAX ..eeeieiiriiiiiiiieeeiiieeeeiieeeeetteeesuteesessteeessseeessssseessssseeesssssessssssesssssseesssssesssnseees 6-58
Figure 6-49 - DIVIDE BY GIVING SYNTAX tiiuvuteieiuiiieiiiieeeiiiteeeeitieeeestteeestteessssseesssssesssssseesssssesesssssesssssssesssssseesssssesssnseees 6-59
[T O I T O =V 2 A V] 0 - D TP 6-60
Figure 6-51 - ENTRY Statement ArgUMENT SYNTaX ..o s s s s s e s s s s s s s s s s s s e sn s e e e eeeeenas 6-60
FIBUIE 6-52 = EVALUATE SYNTAX 1uuuuiiiiiiiiiiiieieieseie e se s s e s s s e s s s s s s s s e s s s s e s s s s s s s s s s a s s e s s e sn s s snsnsnsssnsssnsnsnsssnsnsnsnss 6-61
FIBUIE 653 = EXIT SYNTaX i s e e s s e s a s e s nsnsnsasnsasasasnsssssnsnsssnsnss 6-63
Figure 6-54 - USiNg the EXIT STat@mMENT.....coouiii ittt sttt sttt e st s b e st e st e e sabeeeseesabeesneesane 6-63
Figure 6-55 - USING EXIT PARAGRAPH.........ootiiiiiiiecciee e ctee ettt sette e e sttt e e et e e s esaae e e saaeeessntaeesensteeessseeeesssaeesansseeesnnseens 6-63
Figure 6-56 - Using the EXIT PERFORM Stat@mMent........coiiiiriiiiiiieieeiieeeiee sttt sttt sttt st sreesbeesneesbeesneesane 6-64
U ol W A o o = e Vg | 7) PP 6-65
FIBUIE 6-58 - GENERATE SYNTaX ...ttt se s s s s s s s e s s e s s s s s s s s e s s e s s s s e s e s e s e snsasasnsnsssnsnsnsssnsnsnsnsesnss 6-66
FIBUIE 6-59 - GOBACK SYNTAX ..uuuuiiiiiiiiiiiieiiieieieiesesssese s e se s s s s s s e s e s s e s s s s e s e s s s s e s s s e s s e s e s e s e sassassesasasasasasasasssssnsssnsnsnsssnsesesns 6-67
Figure 6-60 - SIMPIE GO TO SYNTAX..uutttiieiiiiiiiiiieeeeeeeieiiitteeeeeeseirtreeeeeeseirastreeeeessassstaaeaesssesastassseessasasssssesesssessassssnneees 6-68
Figure 6-61 — GO TO DEPENDING ON SYNTAX ..evttiiiiieeiiiiieieiieeeeieee st ee s et seiee e sree e s s smneeesennree e snneeessnrenesenreeesannneas 6-68
Figure 6-62 - GOTO DEPENDING ON VS [F VS EVALUATE ...ttt ettt s s e s e s 6-68
FISUIE 563 = IF SYNTAX 1eiiiuiiiiiiiiet ettt e ettt et e e e sttt et e e s ss bttt e et e e e saabataeeeeessasssataaaeeessassssbataeeessesassbateeaessessnssnraeeeess 6-69
FIGUIE 6-64 - INITIALIZE SYNTAX ...ttttiiireeeiiitieeiiiite ettt e sttt e s ettt e e s et e e st e s e amr e e s sne e e e snaeeeesmreeesennneeesnneeeeanrenesannreeesnnneas 6-70
FIBUIE 6-65 = INITIATE SYNTAX 1uuuiiiiiiiiiiiieieiese s s s s e s s s s s s s e s s s e s s s e s s e s e e s e s e e e sasnsnsasasasnsnsssasnsnsnsnsnsesesnss 6-73
FIBUIE 6-66 = INSPECT SYNTaX ..ttt s s s s s e s s s s s e e s e s e s s s snansesasnsnsssnsnsssasesess 6-74
Figure 6-67 - AN INSPECT TALLYING EX@MPIE ..uuiiiiiiiiiiiiiiiee ettt e e e e e e ettt e e e e e e s et aa e e e e s e esnnnbaaeeeeeeesnnnssenneeens 6-75
FISUIE 6-68 - IMERGE SYNTAX 11ttiiiiiiiiiiiiiieeeeiiiiiteeee e e e seitttee s e s e settaeeeeeesssssaataeeeaessasssstaaeeesssssssstaneeeessassssaneeesesesssssssneeees 6-78
Figure 6-69 - SIMPIE IMOVE SYNTAX......utiiiiiieeieiieeeiiteeeestteeeesteeeseseeeessseeeassteeesasseeesasseeeasssseesanssesesssseesessssnesssssesesnseees 6-80
Figure 6-70 - MOVE CORRESPONDING SYNTAX ...eteiiuireeiiiieeieiiiieesirreeesretesesireeeseseeessneeesssmreeesennreeesanneesssnnenessnnsesesanseees 6-80
FISUIE 6-71 - MULTIPLY BY SYNT@X..uutttttitiiiiiiiiitieeteieieiitttesesssssinteeeeessssssateeeeesssasssssanetessssssssssneeeessessssssneeesssssssssseeeees 6-81
Figure 6-72 - MULTIPLY GIVING SYNTAX ..uuiiiiiiiiiiieieieieieieiesesesesesesese s e sesese s s e s s s s s s s s s s s s s s s e s e sn s e sesnsesnsnsnsnsnsnsssssnsssssssnsnss 6-81
FIigUre 6-73 - NEXT SENTENCE SYNTAX ..uuiiiiiiiiiiiieieieieseiesesesesesesesesese s s sesesese s e s se s e s s se s e s e s e s e sasssssnsnsasnsasasnsnsssnsssssssssnsssssssnsnss 6-82
(R T { O R 2 A O] o VAV 0 - ST PPR 6-83
Figure 6-75 - Procedural PERFORIM SYNTAXuuiiiiiiiiiiiiiiiieeeeeceiititee e e e e eesittteeeeeseesaaataaseeaesesnstaaseaseeesanssasnsesesessssssneeeens 6-85
Figure 6-76 - SIMPIE PERFORMcouiieeiiiiee ettt e st e e ettt e e s etee e st e e e esateeesaasaeeesnseaeesssaeesansseeesnseeeesssaeesannsneennnsenas 6-85
Figure 6-77 - PERFORIM UNTIL EXIT ...eeeeiiiiieeiiiee ettt sttt se e sttt e s ettt e s e e st e s s smre e e sennneeesanneeessnreeesannneeesannnens 6-86
Figure 6-78 — PERFORIM N TIMES........oiiiiiieeiiitte ettt ettt e sttt e s et e s ease e e sanae e e e smb et e sennreeesanneeeesnreeesannreeesannneas 6-86
FIgUIe 6-79 - PERFORIM UNTIL ...uiiiiiiiittiiiiee ettt settee sttt e e ettt e e st e e e sttt e e e sabeeeseaateeesabbteeeaabaeeseasbeeesssaeesaabaeesanstaeesansaeas 6-87
Figure 6-80 - PERFORM VARYING AFTERcetiiiitiiiiitee ettt ettt ettt e sttt e s ettt e e seitte e e sbtteessabaeessasteeesbsaaessabaeessnntaeesnsaens 6-87
Figure 6-81 - INliN@ PERFORIM SYNTAX ...iiiiiiiiiiiiiiee et e e e ettt e e e e e ee ettt e e e e e e e esaaataeeeeeesesnnbaaseaeeeesansbaaeeaeeeesansssnnnaaens 6-89
Figure 6-82 — READ (S@QUENTIAI) SYNTAX c..utiiiiiiiiii ettt ettt e ettt e e e ettt e e e ettt e e e ebaeeeeasaeeeeaseeesenbaeaeesseeeennsenas 6-90
Figure 6-83 - READ (RANOM) SYNTAX ..eeiiiiiieeeiiiieiiiteeeiteeeesiteeesetteeestteeeessteeesessseeessseesasssaeesanssaessssseesassssnesanssesesnnsens 6-91
Figure 6-84 - READY TRACE SYNTAX .uuuuuuiiiiiiiiiiiieieieieseiesesess s s ss e s e s s sasnsnsasasnsnsssasssssssssnsnsssnsnss 6-93
FIBUIE 6-85 = RELEASE SYNTAX 1.uuuiiiiiiiieieierescsese s s s s s s s s s s s s s s s s s s e s e s s s s nsnsnsnsnsnsnsnsnsnsssnsnns 6-94
FIBUIre 6-86 - RESET TRACE SYNTAX ..uuuuiiiiieieieieieiesese e sesess s ss s e s e s s s s s sn s snsssnsasasnsnsssnsssasssnsssnsssnsnns 6-95

11FEB2012 Version X

file:///E:/OpenCOBOL.Docs/2012-02-11%20(2.0)/OC%202.0%2011FEB2012%20Programmers%20Guide.docx%23_Toc329853974
file:///E:/OpenCOBOL.Docs/2012-02-11%20(2.0)/OC%202.0%2011FEB2012%20Programmers%20Guide.docx%23_Toc329853999
file:///E:/OpenCOBOL.Docs/2012-02-11%20(2.0)/OC%202.0%2011FEB2012%20Programmers%20Guide.docx%23_Toc329854000
file:///E:/OpenCOBOL.Docs/2012-02-11%20(2.0)/OC%202.0%2011FEB2012%20Programmers%20Guide.docx%23_Toc329854001
file:///E:/OpenCOBOL.Docs/2012-02-11%20(2.0)/OC%202.0%2011FEB2012%20Programmers%20Guide.docx%23_Toc329854002
file:///E:/OpenCOBOL.Docs/2012-02-11%20(2.0)/OC%202.0%2011FEB2012%20Programmers%20Guide.docx%23_Toc329854003

GNU COBOL 2.0 Programmers Guide Table of Contents

FIBUIe 6-87 - RETURN SYNEaX ... i s e s s s s s s e e s s s e snnnnnsnsnsesnnss 6-96
FIBUIe 6-88 - REWRITE SYNTaX ..uuuiiiiiiiieiicieieserc s s s s s s e s s s s s s s s s s s s s s e s e s s s s e s s snsnsnsnsnsasasssnsns 6-97
Figure 6-89 - ROLLBACK SYNTAX ...vtiiiiiiiiiiiieiieiiie ettt st e s e s ebr e e s smae e e s s b e e e s enr e e e snnaeas 6-98
Figure 6-90 - Sequential SEARCH SYNTAX ...uiiiiiiiiiiiiiee ittt eesie e e ettt e sttt e e st e e sstee e e saaeeessabaeessasseesssseeesssbaeessssaeesnsseens 6-99
Figure 6-91 - Binary SEARCH (ALL) SYNTAX .iiiuviiiiiiiiieiieeiteesteesteestteesiteesteeessseessaeessseassseessseasssesssseasssesssseesssesssesnssenss 6-100
Figure 6-92 - SET ENVIRONMENT SYNTAX...0tiiiiitieeiiiieeiniiieeesiieeeeriteessisteeesseeessssseeesssssessssssessssssesesssssesssssseesssssessssssnes 6-102
Figure 6-93 - SET Program POINter SYNTaX ..icieeeieieieieieieieiesesesesssesesssesssesesese s s sesssasasens 6-102
FIBUIe 6-94 - SET ADDRESS SYNTaX..uuuuiiiiieiiiiieiiieieiesesesesesesese s s s s s e s e s s sasssasnsssnsnsasasasasssssssssnsnsnsssasens 6-103
FIZUIE 6-95 = SET INUEX SYNTAX....uiiiiiiiiiieiiie ettt e ettt e eeete e e etteeeestteeesetteeestteeeesstaeesassseeesasseaeassseesansseeesnsseesansseeesnssnes 6-103
FigUre 6-96 - SET UP/DOWN SYNTAX 1.uteutiiirieriirtirieeitetetetestestesteeseestessasessessesaeeseensensensessessessessesnsensensessessessessesseesenes 6-103
Figure 6-97 - SET CONAIition NameE SYNTAX .io.ueiiiiiiieiiiiiieeete ettt et e sttt e st esabeesat e e sabeesabeesareennneens 6-104
FIGUIE 6-98 - SET SWItCH SYNTAX..ccuutiiiiiiiiiiiieeee ettt ettt e st e bt e e st e e s abe e sabeesab e e sabeesaseesabeennneess 6-104
Figure 6-99 - SET ATTRIBUTE SYNTAX....cciiittteiiiieeiiiteeeniieeesetteeesstteesssteeessaeeesssseeessssseessssssessnsssessssssesssssseesssseesssssnees 6-104
Figure 6-100 - File-Based SORT SYNTAX ..cccuiiiiiiiieeeiiieeeeiiteeeeitteeeesteeeeetteeestaeeeesstaeeeessaeesasseseanssssesasssseessseseanssesesnssens 6-105
FIgUre 6-101 - Table SORT SYNTAX...iiiiiiiieiiieeeiiie e ettt e eeeite e e sitreeeesteeeeetaeeesbreeeeastaeeeessaeeesasseseanstssesasssseessseseanssesesnnsens 6-107
FIBUIE 6-102 = START SYNTAX 1uuuuitiieieieieieiesesesesesese s s s e s e s s e s s s e e s e s e s s e s s e s s s a s sasssasasasasssasssnsnsssnsnsnsnsesnns 6-108
T U I T K T O] V] o | - TR 6-109
FIgUre 6-104 - STRING SYNTAX c..uutiiiiiiiiiiiitie ittt ettt st e e st e s e s e e s eee e s s b e e e s emr e s e sanbn e e s sabaeesenneeesannneas 6-110
Figure 6-105 - SUBTRACT FROM SYNTAX tetittiiiiiiiiiteteieiiiittteteeeseiittteeeesssesiateeeeesssesaasbaaaeesesesassbaneeeessssansnsaeesesssannsnsans 6-111
Figure 6-106 - SUBTRACT GIVING SYNTAX titiieiiiiiiiieiiieiiiiiteet e ee sttt e e e s s sttt e e e e s s s s saabaeeeeessesasbateeeessessssasaeeeesssansnsaes 6-111
Figure 6-107 - SUBTRACT CORRESPONDING SYNTAX..1eieuutttiriurieraiiirerniteeesiureeeenieeesssreessuseesassseeesssseessaseeesssnseeessnsees 6-112
FIBUIE 6-108 - SUPPRESS SYNTAX ..uuuutiiiiiiiiiiiiieieiesesese s s s e s s s s s s s s s s s e s s s s s s s s s s s s s s s s e s s s s e s e s s e s snsnsasnsnsnsnsnsnsssnsssnsnsnsnss 6-113
FIigUIre 6-109 - TERMINATE SYNTAX .uuuuuiiiiiiiiiiieiiieieiesesesesesssesesese s s s s s s se s e s s s s s e s s s e s e s s s e s sasasssssasasssasssssasasssssssssssnsssnsssnsssesnss 6-114
Figure 6-110 - TRANSFORM SYNTAX .uuuuuiiiiiiiiiiiiiiiiiererssesesssese s s s e se s s s s s s s s s s s s e s s s s e s s s s e s e s s s s snsnsnsnsnsnsnsssnsssnsssnsssnsnss 6-115
FIUIe 6-111 - UNLOCK SYNTAX ..vvteriiuriieriirieiiiieeeeiiieee sttt e e sieeessasreeesesae e s sneeeseanresesansneessneeesennesesannaeessaraeesennreeesannneas 6-116
Figure 6-112 - UNSTRING SYNTAX .etiiiuttiiiiitieiiiieeeiiitee st et e st e e st et e s sre e e s e st e e seseee e s sne e e s ennesesananeessaraeesenreeesannneas 6-117
FISUIE 6-113 - WRITE SYNTAX t1tttiiiiiiiiiiiieteeiiiiiiiitteeeeseseiietteeeesssetbateeeeesssssstasaeaeesssssssssasaeessssssnssanseeesssssnsnseeesesssnsnnnnns 6-119
Figure 7-1 - C/GNU COBOL Data TYPE MatCREScveiueeiueeiieeieeieeteeeteeete vt et evesteesaeesteesaeeveebeeaseetaeebsebeeateenseensesnnesans 7-11

Figure 7-2 - GNU COBOL CALLing C
Figure 7-3 - C CALLing GNU COBOL

Figure 8-1 - Compiler ENVironmMeNt Variablesooo ittt e e s rttae e e e e et ae e e e e e s e e nnraaaeaee s 8-4
Figure 8-2 - Run-Time ENVIronmMeNt Variables.........coouii ittt ettt sttt et sabee st e sanee s 8-9
Figure 8-3 - A Binary Truncation DeMO PrOgramcooiiiiiiiiiiieiiiee ettt s s e s e s e e snneees 8-26
Figure 8-4 - A Non-Scientific Comparison of Numeric Data Item USAGE Performancecccccevcveeeieeniieeeneensieeeneennne 8-28

11FEB2012 Version xi

GNU COBOL 2.0 Programmers Guide

Table of Contents

11FEB2012 Version

Xii

GNU COBOL 2.0 Programmers Guide Introduction

1. Introduction

1.1. What is GNU COBOL?

This document describes the syntax, semantics and usage of the COBOL programming language as implemented by
the current version of GNU COBOL, formerly known as OpenCOBOL.

GNU COBOL is an open-source COBOL compiler and runtime environment. The GNU COBOL compiler generates C
code which is automatically compiled and linked. While originally developed for UNIX operating systems, GNU COBOL
has also been successfully built for OSX computers or Windows computers utilizing the UNIX-emulation features of
such tools as Cygwin and MinGW". It has also been built as a truly native Windows application utilizing Microsoft’s
freely-downloadable Visual Studio Express package to provide the C compiler and linker/loader.

The principal developers of GNU COBOL are Keisuke Nishida and Roger While. They may be contacted at the GNU
COBOL website - www.GNU COBOL.org.

This document was intended to serve as a full-function reference and user’s guide suitable for both those readers
learning COBOL for the first time as well as those already familiar with some dialect of the COBOL language. The
author of this document is Gary Cutler, who may be reached via postings at the www.GNU COBOL.org forum, or by
email at CutlerGL@gmail.com.

1.2. Additional References and Documents

For those wishing to learn COBOL for the first time, | can strongly recommend the following resources.

If you like to hold a book in your hands, | strongly recommend “Murach’s Structured COBOL”, by Mike Murach, Anne
Prince and Raul Menendez (2000) - ISBN 9781890774059. Mike Murach and his various writing partners have been
writing outstanding COBOL textbooks for decades, and this text is no exception. It’s an excellent book for those
familiar with the concepts of programming in other languages, but unfamiliar with COBOL.

Would you prefer a web-based tutorial? Try the University of Limerick (Ireland) COBOL web site -
http://www.csis.ul.ie/cobol/.

1.3. Introducing COBOL

If you already know a programming language, and that language isn’t COBOL, chances are that language is Java, C or
C++. You will find COBOL a much different programming language than those — sometimes those differences are a
good thing and sometimes they aren’t. The thing to remember about COBOL is this — it was designed to solve business
problems. It was designed to do that in the 1950s.

COBOL was the first programming language to become standardized such that a COBOL program written on computer
“A” made by company “X” would be able to be compiled and executed on computer “B” made by company “Y”. This
may not seem like such a big deal today, but it was a radical departure from all programming languages that came
before it and even many that came after it.

The name “COBOL” actually says it all - COBOL is an acronym that stands for “COmmon Business Oriented Language”.
Note the fact that the word “common” comes before all others. The word “business” is a close second. Therein lies
the key to COBOL's success.

1.3.1. “I Heard COBOL is a Dead Language!”

Phoenician is a dead language. Mohegan is a dead language. Sanskrit is a dead language. What makes these
languages dead is the fact that no one speaks them anymore. COBOL is NOT a dead language, and despite
pontifications that come down to us from the ivory towers of academia, it isn’t even on life support.

The MinGW approach is a personal favorite with the author of this manual because it creates a GNU COBOL compiler and
runtime that require only a single MinGW DLL to be available to GNU COBOL tools and user programs. That DLL is freely
distributable under the terms of the GNU General Public License. A MinGW build of GNU COBOL fits easily on and runs from a
128MB flash drive with no need to install any software onto the Windows computer that will be using it. Some functionality of
the language, dealing with the sharing of files between concurrently executing GNU COBOL programs and record locking on
certain types of files, is sacrificed however as the underlying operating system routines needed to implement them aren’t
available to Windows.

11FEB2012 Version 1-1

file:///C:/Documents%20and%20Settings/tda010/Application%20Data/Microsoft/Word/www.opencobol.org
http://www.opencobol.org/
mailto:CutlerGL@gmail.com
http://www.csis.ul.ie/cobol/

GNU COBOL 2.0 Programmers Guide Introduction

What made those other languages die is the fact that they became both obsolete and irrelevant. As the peoples that
spoke them were overrun or superseded by other populations that eventually replaced them, no one saw any need to
speak their languages.

COBOL is different. Certainly, there were more people that “spoke” COBOL back in the 1980s than there are now.
Remember, however, the second word in COBOL’s acronym — business. Businesses are complex social and economic
organisms that exist for but a single purpose — to make money. One of the approaches businesses take to satisfy that
all-important survival trait is the avoidance of unnecessary expenses.

This avoidance of expense turns out to have been key to the survival of COBOL because those programmers of the
1980s (give or take a decade) were very busy programmers. Estimates are that as many as several hundred billion
lines of COBOL code were written for businesses world-wide. Because of the first word in COBOL’s name (“Common”),
as businesses replaced their older, slower and less-reliable computer systems with newer, faster and more-reliable
ones, they found that the massive investment they had in their COBOL software inventory paid dividends by remaining
functional on those new systems - many times with no changes needed whatsoever!

Unwilling to endorse change merely for the sake of change, businesses replaced COBOL code only when absolutely
necessary and only when financially justifiable. That justification appeared to have come as the 20™ century was
nearing the end.

Written long before the end of the century was near, many COBOL applications used 2-digit years instead of four digit
years because, when the programs were written, computer storage of any kind was expensive. Why should millions
and millions of bytes of storage be wasted by all those “19” sequences when the software can just simply assume
them? Since their software would suddenly think the current year was “1900” after the stroke of midnight, December
31% 1999, businesses knew they were going to have to do something about the “Y2K” (programmer “geek speak” for
“Year 2000”) problem.

At last! Y2K was going to be the massive asteroid strike that finally killed off the COBOL dinosaur.
Unfortunately for those seeking the extinction of COBOL, that proved to be wishful thinking.

Always concerned with the bottom line, businesses actually analyzed the problems with their programs. Many
applications were replaced with newer and “better” versions that used more appropriate (translation: more politically
correct) languages and computer systems. BUT ... many applications were not replaced. These were the absolutely
essential applications whose replacement would cripple the business if everything didn’t go absolutely perfectly.
These COBOL applications were modified to use 4-digit years instead of 2-digit ones. At the same time, many of them
received cosmetic “face lifts” to make their computer/human interfaces more acceptable, frequently with the help of
modules developed in the newer languages.

The result is that even today, after the Y2K “extinction event”, there are, by some industry estimates, over 220 billion
lines of COBOL code still running the businesses of the 21* century. A fact that is disturbing to some is that — just as
tiny little furry mammals evolved to cope with the original “extinction event” holocaust — COBOL has also evolved into
a leaner and meaner “animal” capable of competing in niches and providing services unthought-of back in 1968. That
fact is confirmed by the fact that those lines of COBOL code being tracked by industry analysts are actually growing at
the rate of about 4 billion a year.

Evolution, you see, is in COBOLs DNA. Over time, COBOL evolved in form and function, first via work done by the
American National Standards Institute (ANSI) and eventually through the efforts of the International Standards
Organization (1SO).

The first widely-adopted standard for COBOL was published by ANSI in 1968>. Named the ANS68 standard, this
version of COBOL was originally standardized for use primarily as the business programming tool of the US Defense
Department; it quickly was adopted by other Government agencies and private businesses alike.

Subsequent standards published in 1974 and 1985 (ANS74 and ANSS85, respectively) added new features and evolved
the language toward adoption of the programmer-productivity tool of the time — “Structured Programming”.

2 Tothat point, in 1968 the US Government made it a requirement that any computer system sold to them must run a version of

COBOL that adhered to the ANSI68 standard. The requirement that computers sold to the US Government had to support the
current COBOL standard remained for many, many years.

11FEB2012 Version 1-2

GNU COBOL 2.0 Programmers Guide Introduction

As the 21% century dawned, programming had moved out of the board room and into the Game Room, the Living
Room and even the Kitchen. As computers became more and more inexpensive they appeared in games,
entertainment devices and appliances. Even the automobile became home to computers galore. These computers
need software, and that software is written in the so-called “modern” languages.

Combined with Y2K, these trends became the impetus for COBOL to evolve even newer features and capabilities. The
COBOL2002 standard? introduced object-oriented features and syntax that make the language more programmer-
friendly to those trained by today’s programming curricula. The COBOL20xx standard, currently under development,
carries the evolution forward to the point where a COBOL20xx implementation will be fully as “modern” as any other
programming language.

Through all this evolution, however, care was taken with each new standard to protect the investment businesses (or
anyone, for that matter) had in COBOL software. Generally, a new COBOL standard — once implemented and adopted
by a business - required minimal, if any, changes to existing applications. When changes were necessary, those
changes could frequently be made using tools that mechanically upgraded entire libraries of source code with little or
no need for human intervention.

The GNU COBOL implementation of the COBOL language supports virtually the entire ANS85 standard as well as some
significant features of the COBOL2002 standard, although the truly object-oriented features are not there (yet).

1.3.2. Programmer Productivity - The “Holy Grail”

Throughout the history of computer programming, the search for new ways to improve of the productivity of
programmers has been the all-important consideration. Sometimes this search has taken the form of introducing new
features in programming languages, or even new languages altogether. Sometimes it has evolved new ways of using
the existing languages. Other than hobbyists, programming is an activity performed for money. Businesses abhor
spending anything more than is absolutely necessary. Even government agencies try to spend as little money on
projects as is absolutely necessary4.

The amount of programming necessary to accomplish a given task — including rework needed by any errors found
during testing (testing: “that time during which an application is actually in production use attempting to serve the
purpose for which it was designed” ©) is the measure of programmer productivity. Anything that reduces that effort
will therefore reduce the time spent in such activities therefore reducing the expense of same. When the expense of
programming is reduced, programmer productivity is increased.

While many technological and procedural developments have made evolutionary improvements to programmer
productivity, each of the following has been responsible for revolutionary improvements:

» The development of so-called “higher-level” programming languages that enable a programmer to specify in
a single statement of the language an action that would have required many more separate statements in a
prior programming language. The standardization of such languages, making them usable on a wide variety
of computers and operating systems, was a key aspect of this development. COBOL was a pioneering
development in this area, being one of the first higher-level languages and the first to become standardized.

» The establishment of programming techniques that make programs easier to read and therefore easier to
understand. Not only do such techniques reduce the amount of rework necessary simply to make a program
work as designed, but they also reduce the amount of time a programmer needs to study an existing program
in order how to best adapt it to changing business requirements. The foremost development in this area was
structured programming. Introduced in the late 1970s, this approach to programming spawned new
programming languages (PASCAL, ALGOL, PL/1) designed around it. With the ANSI85 standard, COBOL
embraced the principles espoused by structured programming mavens as well as any of the languages
designed strictly around it.

» The establishment of programming techniques AND the introduction of programming language capabilities to
facilitate the reusability of program code. Anything that supports code reusability can have a profound

3 “Popular” names for COBOL standards no longer include an organization’s name, and now use Y2K-compliant 4-digit years.

* Thisisa religious issue because it is an assertion that — sadly — must be taken purely on faith; there is, unfortunately, all too

little real-world evidence to support it. It makes sense though, so one can only hope it is true.

11FEB2012 Version 1-3

GNU COBOL 2.0 Programmers Guide Introduction

impact to the amount of time it takes to develop new applications or to make significant changes to existing
ones. In recent years, object-oriented programming has been the industry “poster child” for code reusability.
By enabling program logic and the data structures that logic manipulates to be encapsulated into easily
stored and retrieved (and therefore “reusable”) modules called classes, the object-oriented languages such as
Java, C++ and C# have become the favorites of academia. Since students are being trained in these
technologies and only these, by and large, it’s no surprise that — today - object-oriented programming
languages are the darlings of the industry.

The reality is, however, that good programmers have been practicing code reusability for more than a half-
century. Up until recently, COBOL programmers have had some of the best code reusability tools available -
they’ve been doing it with copybooks and subprograms rather than classes, methods and attributes but the
net results have been similar. With the COBOL2002 standard and the improvements made by the COBOL20xx
standard, the playing field is rapidly becoming leveled in this regard.

1.3.3. Notable COBOL/GNU COBOL Features

1.3.3.1. Basic Program Readability

The most vociferous critics of COBOL always focus on the wordiness of the language, often citing the case of an
infamous “Hello World” program as the “proof” that COBOL is so much more tedious to program in than more
“modern” languages. This tedium is cited as such a significant impact to programmer productivity that —in their
minds — the critics believe that COBOL can’t go away quickly enough for them.

Here are two different “Hello World” applications — one written in Java and the second in COBOL2002:

Java “Hello World” COBOL2002 “Hello World” (Free-form Mode)®
Class HelloWorld { identification division.
public static void main(String[] args) { program-id. HelloWorld.
System.out.println (“Hello World!”); procedure division.

} display “Hello World!”.

Both programs could have been written on a single line, if desired, and both languages allow a programmer to use (or
not use) indentation as they see fit to improve program readability. Sounds like a tie so far.

Let’s look at how much more “wordy” COBOL is than Java. Count the characters in the two programs. The Java
program has 95 (not counting carriage returns and any indentation). The COBOL program has 89 (again, not counting
carriage returns and indentation)! Technically, it could have been only 65 because the “identification division.” header
is actually optional.

Clearly, “Hello World” doesn’t look any better in Java than it does in COBOL.

Let’s look at a different problem. Surely a program that asks a user to input a positive integer, generates the sum of all
positive integers from 1 to that number and then prints the result will be MUCH easier to code in Java than in COBOL,
right?

> One of the features of the COBOL2002 standard is its ability to allow programs to be coded in free-form mode, where line

breaks and indentation are pretty much left to the discretion of the programmer. It wasn’t always this way, and the pre-2002
standards for COBOL are quite rigid when it comes to that sort of thing. Maybe the COBOL critics

11FEB2012 Version 1-4

GNU COBOL 2.0 Programmers Guide Introduction

You can be the judge.

Java Sum of Integers COBOL2002 Sum of Integers (Free-form Mode)6
import java.util.Scanner; identification division.
public class sumofintegers { program-id. sumofintegers.
public static void main(String[] arg) { data division.
System.out.println (“Enter a positive integer”); | working-storage section.
Scanner scan=new Scanner (System.in); 01 n binary-int.
int n=scan.nextInt () ; 01 i binary-int.
int sum=0; 01 sum binary-int.
for (int i=1;i<=n;i++) { procedure division.
sum=sum+i; display “Enter a positive integer”
} accept n
System.out.println (“The sum is “+sum); perform varying i from 1 by 1 until i>n
} add i to sum
} end-perform
display “The sum is “ sum.

My familiarity with COBOL may be prejudicing my opinion, but it doesn’t appear to me that the Java code is any
simpler than the COBOL code. In case you’re interested in character counts, the Java code comes in at 281 (not
counting indentation characters). The COBOL code is 287 (263 without the “identification division.” header).

The more complex the programming logic being implemented, the more concise the Java code will appear to be, even
compared to 2002-standard COBOL. That conciseness comes with a price though — program code readability. Java (or
C or C++ or C#) programs are generally intelligible only to trained programmers. COBOL programs can be quite
intelligible to non-programmers, however. This is actually a side-effect of the wordiness of the language, where
COBOL statements use natural English words to describe their actions. This inherent readability has come in handy
many times throughout my career when I’ve had to learn obscure business (or legal) processes by reading COBOL
program code that supports them.

The “modern” languages, like COBOL, also have their own “boilerplate” infrastructure overhead that must be coded in
order to write the logic that is necessary in the program. Take for example the “public static void

main (String[] arg) {“and “import java.util.Scanner;” statements. The critics tend to forget
about this when they criticize COBOL for it’s structural “overhead.”

When it first was developed, COBOL’s easily-readable syntax made it profoundly different from anything that had
been seen before. For the first time, it was possible to specify logic in a manner that was — at least to some extent —
comprehensible even to non-programmers. Take for example, the following code written in FORTRAN — a language
developed only a year before COBOL:

E
I

P *Q
I+ E

With its original limitation on the length of variable names (one letter or a letter followed by a number), and its use of
algebraic notation to express actions being taken, FORTRAN wasn’t a particularly readable language, even by
programmers. Compare this with the equivalent COBOL code:

MULTIPLY PRICE BY QUANTITY GIVING EXTENDED-AMOUNT
ADD EXTENDED-AMOUNT TO INVOICE-TOTAL

Clearly, even a non-programmer could at least conceptually understand what was going on! Over time, languages like
FORTRAN evolved more robust variable names, and COBOL introduced a more formula-based syntactical capability for
arithmetic operations, but FORTRAN was never as readable as COBOL.

Because of its inherent readability, | would MUCH rather be handed an assignment to make significant changes to a
COBOL program about which | know nothing than to be asked to do the same with a C, C++, C# or Java program.

Those that argue that it is too boring/wasteful/time-consuming/insulting (pick one) to have to code a COBOL program
“from scratch” are clearly ignorant of the following facts:

One of the features of the COBOL2002 standard is its ability to allow programs to be coded in free-form mode, where line
breaks and indentation are pretty much left to the discretion of the programmer. It wasn’t always this way, and the pre-2002
standards for COBOL are quite rigid when it comes to that sort of thing. Maybe the COBOL critics

11FEB2012 Version 1-5

GNU COBOL 2.0 Programmers Guide Introduction

» Many systems have program-development tools available to ease the task of coding programs; those tools
that concentrate on COBOL are capable of providing templates for much of the “overhead” verbiage of any
program...

» Good programmers have — for decades — maintained their own skeleton “template” programs for a variety of
program types; simply load a template into a text editor and you’ve got a good start to the program...

B Legend has it that there’s actually only been ONE program ever written in COBOL — all programs ever
“written” thereafter were simply derivatives of that one!

1.3.3.2. COBOL Program Structure

COBOL programs are structured into four major areas of coding, each with its own purpose. These four areas are
known as DIVISIONS.

Each DIVISION may consist of a variety of SECTIONs and each SECTION consists of one or more PARAGRAPHs. A
PARARAPH consists of SENTENCEs, each of which consists of one or more STATEMENTS.

This hierarchical structure of program components standardizes the composition of all COBOL programs. Much of this
manual describes the various divisions, sections, paragraphs and statements that may comprise any COBOL program.

See Also...
The Four Divisions of a Program 1.5 The DATADIVISION 5
The IDENTIFICATION DIVISION 3 The PROCEDURE DIVISION 6
The ENVIRONMENT DIVISION 4

1.3.3.3. Copybooks

A “copybook” is a segment of program code that may be utilized by multiple programs simply by having that program
use the COPY statement to import that code into the program. This code may define files, data structures or
procedural code.

” o

Today’s current programming languages have a statement (usually, this statement is named “import”, “include” or
“#tinclude”) that performs this same function. What makes the COBOL copybook feature different than the “include”
facility in current languages, however, is the fact that the COBOL COPY statement can edit the imported source code
as it is being copied. This capability makes copybook libraries extremely valuable to making code reusable.

See Also...

The COPY Statement 2.1.1

11FEB2012 Version 1-6

GNU COBOL 2.0 Programmers Guide Introduction

1.3.3.4. Structured Data

COBOL introduced the concept of structured data back in the 1960s. Structured data is data which may be accessed
as a single item or may be broken down into sub-items based upon their character position of occurrence within the
structure. These structures called group items. At the bottom of any structure are data items that aren’t broken
down into sub-items. COBOL refers to these as elementary items.

1.3.3.5. Files

One of COBOLs main strengths is the wide variety of files it is capable of accessing. GNU COBOL programes, like those
created with other COBOL implementations, need to have the structure of any files they will be reading and/or writing
described to them. The highest-level characteristic of a file’s structure is defined by specifying the ORGANIZATION
(section) of the file, as follows:

ORGANIZATION IS These are files with the simplest of all internal structures. Their contents are structured simply

LINE SEQUENTIAL as a series of data records, each terminated by a special end-of-record delimiter character. An
ASCII line-feed character (hexadecimal OA) is the end-of-record delimiter character used by
any UNIX or pseudo-UNIX (MinGW, Cygwin, OSX) GNU COBOL build. A truly native Windows
build would use a carriage-return, line-feed (hexadecimal 0DOA) sequence.

Records in this type of file need not be the same length.

Records must be read from or written to these files in a purely sequential manner. The only
way to read (or write) record number 100 would be to have read (or written) records number
1 thru 99 first.

When the file is written by a GNU COBOL program, the delimiter sequence will be
automatically added to each data record as it is written to the file. WRITEs to this type of file
will be done using an implied “BEFORE ADVANCING 1 LINE” clause in the absence of an
explicitly-specified ADVANCING clause.

When the file is read, the GNU COBOL runtime system will strip the trailing delimiter sequence
from each record and pad the data (to the right) with SPACES if the data just read is shorter
than the area described for data records in the program. If the data is too long, it will be
truncated and the excess will be lost.

These files should not be defined to contain any exact binary data fields because the contents
of those fields could inadvertently have the end-of-record sequence as part of their values —
this would confuse the runtime system when reading the file, and it would interpret that value
as an actual end-of-record sequence.

LINE ADVANCING These are files with an internal structure similar to that of the LINE SEQUENTIAL file. These
files files are defined (without an explicit ORGANIZATION specification) using the LINE ADVANCING
clause on their SELECT statement.

When this kind of file is written by a GNU COBOL program, the delimiter sequence will be
automatically added to each data record as it is written to the file. WRITEs to this type of file
will be done using an implied “AFTER ADVANCING 1 LINE” clause in the absence of an
explicitly-specified ADVANCING clause.

Like ORGANIZATION LINE SEQUENTIAL files, these files should not be defined to contain any
exact binary data fields because the contents of those fields could inadvertently have the end-
of-record sequence as part of their values — this would confuse the runtime system when
reading the file, and it would interpret that value as an actual end-of-record sequence.

ORGANIZATION IS These files also have a simple internal structure. Their contents are structured simply as an
RECORD BINARY arbitrarily-long sequence of data characters. This sequence of data characters will be treated
SEQUENTIAL as a series of fixed-length data records simply by logically splitting the sequence of data

characters up into a series of fixed-length segments each as long as the maximum record size
defined in the program. There are no special end-of-record delimiter characters in the file and

11FEB2012 Version 1-7

GNU COBOL 2.0 Programmers Guide Introduction

ORGANIZATION IS
RELATIVE

11FEB2012 Version

when the file is written to by a GNU COBOL program, no delimiter sequence is appended to
the data.

Records in this type of file are all the same physical length, except possibly for the very last
record in the file, which may be shorter than the others. If variable-length logical records are
defined to the program, the space occupied by each physical record in the file will occupy the
maximum possible space.

So, if a file contains 1275 characters of data, and a program defines the structure of that file as
containing 100-character records, then the file contents will consist of twelve (12) 100-
character records with a final record containing only 75 characters.

Even though it appears that it should be possible to locate and process any record in the file
directly simply by calculating its starting character position based upon the program-defined
record size, records must be still be read or written to these files in a purely sequential
manner. The only way to read (or write) record number 100 would be to have read (or
written) records number 1 thru 99 first.

When the file is read, the data is transferred into the program exactly as it exists in the file. In
the event that a short record is read as the very last record, that record will be SPACE padded.

Care must be taken that programs reading such a file describe records whose length is exactly
the same as that used by the programs that created the file. For example, the following shows
the contents of a RECORD BINARY SEQUENTIAL file created by a program that wrote five 6-
character records to it. The “A”, “B”, ... values and the background colors reflect the records
that were written to the file:

Now, assume that another program reads this file, but described 10-character records rather
than 6. Here are the records that program will read:

There may be times where this is exactly what you were looking for. More often than not,
however, this is not desirable behavior. Suggestion: use a copybook to describe the record
layouts of any file; this guarantees that multiple programs accessing that file will “see” the
same record sizes and layouts.

These files can contain exact binary data fields because the contents of record fields are
irrelevant to the reading process as there is no end-of-record delimiter.

The contents of these files consist of a series of fixed-length data records prefixed with a four-
byte record header. The record header contains the length of the data, in bytes. The byte-
count does not include the four-byte record header.

Records in this type of file are all the same physical length. If variable-length logical records
are defined to the program, the space occupied by each physical record in the file will occupy
the maximum possible space.

This file organization was defined to accommodate either sequential or random processing.
With a RELATIVE file, it is possible to read or write record 100 directly, without having to have
first read or written records 1-99. The GNU COBOL runtime system uses the program-defined
maximum record size to calculate a relative byte position in the file where the record header
and data begin, and then transfers the necessary data to or from the program.

When the file is written by a GNU COBOL program, no delimiter sequence is appended to the
data, but a record-length field is added to the beginning of each physical record.

When the file is read, the data is transferred into the program exactly as it exists in the file.

Care must be taken that programs reading such a file describe records whose length is exactly
the same as that used by the programs that created the file. It won’t be a pretty site when the

1-8

GNU COBOL 2.0 Programmers Guide Introduction

ORGANIZATION IS
INDEXED

GNU COBOL runtime library ends up interpreting a four-byte ASCII character string as a record
length when it transfers data from the file into the program!

Suggestion: use a copybook to describe the record layouts of any file; this guarantees that
multiple programs accessing that file will “see” the same record sizes and layouts.

These files can contain exact binary data fields. The contents of record fields are irrelevant to
the reading process as there is no end-of-record delimiter.

This is the most advanced file structure available to GNU COBOL programs. It’s not possible to
describe the physical structure of such files because that structure will vary depending upon
which advanced file-management facility was included into the GNU COBOL build you will be
using (Berkeley Database [BDB], VBISAM, etc.). We will —instead — discuss the logical
structure of the file.

There will be multiple structures stored for an INDEXED file. The first will be a data
component, which may be thought of as being similar to the internal structure of a RELATIVE
file. Data records may not, however, be directly accessed by their record number as would be
the case with a RELATIVE file, nor may they be processed sequentially by their physical
sequence in the file.

The remaining structures will be one or more index components. An index component is a
data structure that (somehow) enables the contents of a field, called a primary key, within
each data record (a customer number, an employee number, a product code, a name, etc.) to
be converted to a record number so that the data record for any given primary key value can
be directly read, written and/or deleted. Additionally, the index data structure is defined in
such a manner as to allow the file to be processed sequentially, record-by-record, in ascending
sequence of the primary key field values. Whether this index structure exists as a binary-
searchable tree structure (btree), an elaborate hash structure or something else is pretty much
irrelevant to the programmer — the behavior of the structure will be as it was just described.
The runtime system will not allow two records to be written to an indexed file with the same
primary key value.

The capability exists for an additional field to be defined as what is known as an alternate key.
Alternate key fields behave just like primary keys, allowing both direct and sequential access
to record data based upon the alternate key field values, with one exception. That exception
is the fact that alternate keys may be allowed to have duplicate values, depending upon how
the alternate key field is described to the GNU COBOL compiler.

There may be any number of alternate keys, but each key field comes with a disk space
penalty as well as an execution time penalty. As the number of alternate key fields increases,
it will take longer and longer to write and/or modify records in the file.

These files can contain exact binary data fields. The contents of record fields are irrelevant to
the reading process as there is no end-of-record delimiter.

All files are initially described to a GNU COBOL program using a SELECT statement coded in the FILE-CONTROL
paragraph of the INPUT-OUTPUT SECTION of the ENVIRONMENT DIVISION. In addition to defining a name by which
the file will be referenced within the program, the SELECT statement will specify the name and path by which the file
will be known to the operating system along with its ORGANIZATION, locking and sharing attributes.

A file description in the FILE SECTION of the DATA DIVISION will define the structure of records within the file,
including whether or not variable-length records are possible and — if so — what the minimum and maximum length
might be. In addition, the file description entry can specify file 1/0O block sizes.

See Also...

Defining the Characteristics of a File 4.

N
o
=
©
=

1 File Sharing

Describing the Structure of a File (FD/SD) 5.

[Eny
(<]
=
©
N

Record Locking

1.3.3.6. Table Handling

11FEB2012 Version

1-9

GNU COBOL 2.0 Programmers Guide Introduction

Other programming languages have arrays, COBOL has tables. They’re basically the same thing. What makes COBOL
tables special are two special statements that exist in the COBOL language — SEARCH and SEARCH ALL.

The first can search a table sequentially, stopping only when either a table entry matching one of any number of
search conditions is found, or when all table entries have been checked against the search criteria and none matched
any of those criteria.

The second can perform an extremely fast search against a table sorted by and searched against a “key” field
contained in each table entry. The algorithm used for such a search is a binary search (also known as a half-interval
search). This algorithm ensures that only a small number of entries in the table need to be checked in order to find a
desired entry or to determine that the desired entry doesn’t exist in the table. The larger the table, the more effective
this search becomes. For example, a table containing 32,768 entries will be able to locate a particular entry or will
determine the entry doesn’t exist by looking at no more than fifteen (15) entries! The algorithm is explained in detail
in the SEARCH ALL documentation.

See Also...
‘ Defining Tables 0 ‘ The SEARCH Statement 6.4.38.1

The SEARCH ALL Statement 6.4.38.2

1.3.3.7. Sorting and Merging Data

The COBOL language includes a powerful SORT statement that can sort large amounts of data according to arbitrarily
complex key structures. This data may originate from within the program or may be contained in one or more
external files. The sorted data may be written automatically to one or more output files or may be processed, record-
by-record in the sorted sequence.

A special form of the SORT statement also exists just to sort the data that resides in a table. This is particularly useful
if you wish to use SEARCH ALL against the table.

A companion statement — MERGE- can combine the contents of multiple files together, provided those files are all
sorted in a similar manner according to the same key structure(s). The resulting output will consist of the contents of
all of the input files, merged together and sequenced according to the common key structure(s). The output of a
MERGE may be written automatically to one or more output files or may be processed internally by the program.

See Also...
‘ The MERGE Statement 6.4.25 The SORT Statement (File Sort) 6.4.40.1

The SORT Statement (Table Sort) 6.4.40.2

1.3.3.8. String Manipulation

There have been programming languages designed specifically for the processing of text strings, and there have been
programming languages designed for the sole purpose of performing high-powered numerical computations. Most
programming languages fall somewhere in the middle, between these two extremes. COBOL is no exception,
although it does include some very powerful string manipulation capabilities; GNU COBOL actually has even more
string-manipulation capabilities than many other COBOL implementations.

See Also...
Concatenate Two Or More Strings | CONCATENATE Intrinsic Function 6.1.7.9
STRING Statement 6.4.43
Conversion Of A Numeric Time Or Date | LOCALE-TIME Intrinsic Function 6.1.7.35
To A Formatted Character String | | ocALE-DATE Intrinsic Function 6.1.7.32
Convert A Binary Value To Its | CHAR Intrinsic Function; add 1 to argument before invoking 6.1.7.7

Corresponding Character In The | the function; The description of the CHAR function shows a

Program’s Characterset | technique that utilizes the MOVE statement that will
accomplish the same thing without the need of adding 1 to
the numeric argument value first

11FEB2012 Version 1-10

GNU COBOL 2.0 Programmers Guide Introduction
Convert A Character String To Lower-Case | LOWER-CASE Intrinsic Function 6.1.7.39
CSTOLOWER Built-in Subroutine 8.3.1.13
CBL_TOLOWER Built-in Subroutine 8.3.1.40
Convert A Character String To Upper- | UPPER-CASE Intrinsic Function 6.1.7.87
Case | c¢TOUPPER Built-in Subroutine 8.3.1.14
CBL_TOUPPER Built-in Subroutine 8.3.1.41
Convert A Character String To Only | CSPRINTABLE Built-in Subroutine 8.3.1.11

Printable Characters, Changing Any Non-
Printable Characters To A Default (“.”) Or
Programmer-Specified Replacement

Character.
Convert A Character To Its Numeric Value | ORD Intrinsic Function; subtract 1 from the result; The 6.1.7
In The Program’s Characterset | description of the ORD function shows a technique that
utilizes the MOVE statement that will accomplish the same
thing without the need of adding 1 to the numeric argument
value first
Count Occurrences Of Substrings In A | INSPECT Statement with TALLYING Option 6.4.24
Larger String
Decode A Formatted Numeric String Back | NUMVAL Intrinsic Function 6.1.7.54
To A Numeric Value (For Example, NUMVAL-C Intrinsic Function (handles currency-formatted 6.1.7.59
Decode “$12,342.19-“ To A -12342.19 :
strings)
Value)
Determine The Length Of A String Or | LENGTH Intrinsic Function 6.1.7.31
Data-ltem Capable Of Storing Strings | gyt | ENGTH Intrinsic Function 6.1.7.6
Extract A Substring Of A String Based On | Use of a reference modifier on the string field. 6.1.3
Its Starting Character Position And Length
Format A Numeric Item For Output, | MOVE Statement with picture-symbol editing applied to the 5.3and
Including Thousands-Separators (“,” In | receiving field 6.4.26
The USA), Currency Symbols (“$” In The
USA), Decimal Points, Credit/Debit
Symbols, Leading Or Trailing Sign
Characters
Justification (Left, Right Or Centered) Of | CSJUSTIFY built-in subroutine 8.3.1.6
A String Field
Monoalphabetic Substitution Of One Or | INSPECT Statement with CONVERTING Option 6.4.24
More Characte?rs In A String With TRANSFORM Statement 6.4.47
Different Characters
SUBSTITUTE Intrinsic Function 6.1.7.77
SUBSTITUTE-CASE Intrinsic Function 6.1.7.78
Parse A String, Breaking It Up Into | UNSTRING Statement 6.4.49
Substrings Based Upon One Or More
Delimiting Character Sequences; These
Delimiters May Be Single Characters,
Multiple-Character Strings Or Multiple
Consecutive Occurrences Of Either
Removal Of Leading Or Trailing Spaces | TRIM Intrinsic Function 6.1.7.83
From A String
Substitution Of A Single Substring With | MOVE Statement with a reference modifier on the 6.1.3
Another Of The Same Length, Based | “receiving” field and
Upon The Substrings Starting Character 6.4.26.1
11FEB2012 Version 1-11

GNU COBOL 2.0 Programmers Guide Introduction

Position And Length

Substitution Of One Or More Substrings | INSPECT Statement with REPLACING Option 6.4.24
In A String With Replacement Substrings | ¢;gsTITUTE Intrinsic Function 6.1.7.77
Of The Same Length, Regardless Of
Where They Occur SUBSTITUTE-CASE Intrinsic Function 6.1.7.78
Substitution Of One Or More Substrings | SUBSTITUTE Intrinsic Function 6.1.7.77
In A String With Replacement Substrings | g)ggiTyTE-CASE Intrinsic Function 6.1.7.78

Of A Potentially Different Length,
Regardless Of Where They Occur

1.3.3.9. Textual-User Interface (TUI) Features

The COBOL2002 standard formalizes extensions to the COBOL language that allow for the definition and processing of
text-based screens, as is a typical function on mainframe computers. GNU COBOL implements virtually all the screen-
handling features described by COBOL2002. Here is an example of such a screen as it might appear in the console
window of a Windows computer:

Figure 1-1 - A Sample TUI Screen
GNU COBOL Compile [=
GCic <2013-11.-18 14:33> GHU COBOL 2.8 11FEB2812 Interactive Compilation

Filename: GGic.chl
Folder: E:~GHU-CO

SetsCly Switches Uia F1-F?; Set Config Uia F12; ENTER Key Compiles: ESC Quits

Assume WITH DEBUGGIMG MODE Fé >"FUNCTION' Is Optional Current
Procedure+Statement Trace F? >Enable All Warnings Config:
Make a Library <DLL>» F8 Source Is Free-Format DEFAULT
Execute If Compilation OK F? >*Mo COMP-BIMARY Truncation

Produce Full Listing

Extra “cobc'" Switches, If Any {"-save—temps=xxx'" Prevents Listings):

|

Program Execution Arguments. If Any:

- s

GCic for Windows-MinGW Copyright <G> 2087-2813, Gary L. Cutler, GPL

Screens such as this’ are defined in the SCREEN SECTION of the DATA DIVISION. Once defined, screens are used at
run-time via the ACCEPT and DISPLAY statements.

The COBOL2002 standard only covers textual-user interface (TUI) screens and not the more-advanced graphical-user
interface (GUI) screen design and processing capabilities built into most modern operating systems. There are
subroutine-based packages available that can do full GUI development, but none are open-source.

See Also...

Defining Screens 5.6 The ACCEPT Statement (Screen Data) 6.4.1.4

The DISPLAY Statement (Screen Data) 6.4.12.4

This screen comes from the program named GCic — a full-screen front-end to the GNU COBOL compiler — the source code of
which is included as a sample in this manual. See section 10.4 for the listing of the program.

11FEB2012 Version 1-12

GNU COBOL 2.0 Programmers Guide

Introduction

1.4. Syntax Description Conventions

Syntax of the GNU COBOL language will be described in this manual with conventions familiar to COBOL programmers,
with a few coloring conventions throuwn in to aid in readability and interpretation. The following is a description of
those syntactical-description techniques:

Black

UPPERCASE

UNDERLINING

lowercase-italic

[optional-syntax]

choice-1 | choice-2

{ choice-1 }
choice-2

Shaded Areas

11FEB2012 Version

Syntactical elements that are part of the GNU COBOL language (including required
punctuation symbols, operators and so on) will appear in black. Other colors such as red
and blue will be used to highlight those elements that are merely part of the syntax
description.

COBOL language keywords and implementation-dependent names (the so-called “reserved
words” of the COBOL language) will appear in BOLD UPPERCASE.

reserved words that are UNDERLINED are required in whatever syntactical context they are
shown. If a reserved word is not underlined, it is optional and its presence or absence has
no effect on the program.

Generic terms representing substitutable items will be shown in italic lowercase.

Red Square brackets are used to enclose optional syntax. Any clauses not enclosed in
square brackets are mandatory. These are also used sometimes in conjunction with the
ellipsis (...) to indicate an optional syntactical item that could be repeated.

Simple choices may be indicated with a red vertical bar separating them. Although not
typically used in COBOL syntactical diagrams, this convention is an effective alternative that
may be used when square brackets would make a syntax diagram too complicated. For
example, THRU | THROUGH would indicate that either of the required reserved words THRU
or THROUGH may be used.

Red braces are used to enclose choices. Exactly one of the choices contained within the
braces must be selected. These are also used sometimes in conjunction with the ellipsis {...)
to indicate a choice of syntactical items that may be repeated.

A red three-dot sequence (called an “ellipsis”) may appear following [], { } or lowercase
italic entries to indicate that the syntax element preceding the ellipsis may occur multiple
times.

Shaded areas are used to highlight syntax elements that are recognized by the GNU COBOL
compiler but will either have no effect on the generated code or will have a compiler
warning issued announcing that feature is unsupported. Such elements are either present
in the GNU COBOL language to facilitate the porting of programs from other COBOL
environments, reflect syntax elements that are not yet fully implemented or syntax
elements that have become obsolete.

1-2

GNU COBOL 2.0 Programmers Guide Introduction

1.5. General GNU COBOL Program Format
1.5.1. Source Line Format

1.5.1.1. Fixed Format Mode

Prior to the COBOL2002 standard, source statements in COBOL programs were oriented around 80-column punched
cards. This means that each source line in a COBOL program consisted of five different “areas”, defined by their
column number.

This structure is enforced by GNU COBOL when the compiler is operating in Fixed Format Mode; Fixed Format Mode is
the default mode in effect when the compiler begins execution.

Column Area Name Usage
Numbers

1-6 Sequence Historically back in the days when punched-cards were used to submit COBOL program
Number source to a COBOL compiler, this part of a COBOL statement was reserved for a six-digit
Area sequence number.

While the contents of this area are ignored by COBOL compilers, it existed so that a
program actually punched on 80-character cards could — if the card deck were dropped
on the floor — be run through a card sorter machine and restored to it’s proper sequence.
Of course, this isn’t necessary today; if truth be told, it hasn’t been necessary for a long
time.

See Section 9.1 for a discussion of how this area tends to be used today.

7 Indicator Column 7 serves as an indicator in which one of five possible values will appear — space,
Area “D” (or “d”), “-“ (dash), “/” or “*”. The vast majority of COBOL source file lines have a
space in this position. The values “D”, “*” and “/” are three different types of
“comment” indicators, telling the compiler to (normally) ignore this source line.

A value of “-“ served as a continuation character in the event that a literal value,
reserved word or programmer-defined name needed to be split across two lines of code.
This is/was rarely used and — when it does — is/was almost always used to continue an
alphanumeric literal (character string).

8-11 “Area A” Language DIVISION, SECTION and paragraph section headers must begin in Area A, as
must the level numbers 01, 77 in data description entries and the “FD” and “SD” file and
SORT description headers.

12-72 “Area B” All other COBOL programming language components are coded in these columns.

73-80 Program This is another area of COBOL statements that is ignored by COBOL compilers. This part
Name Area | of every statement also hails back to the day when programs were punched on cards — it
was expected that the name of the program (or at least the first 8 characters of it) would
be punched here so that —if a dropped COBOL source deck contained more than one
program, that handy card sorter machine could be used to first separate the cards by
program name and then sort them by sequence number.

Today’s COBOL compilers (including GNU COBOL) simply ignore anything past column 73

The GNU COBOL compiler (cobc) operates in fixed format mode by default (you may explicitly specify the “-fixed”
switch, if you wish, but that is the default mode), unless you specify otherwise in one of the following ways:

» You run the compiler with the “-free” switch to turn on free-format mode.
» You use the “>>SET SOURCEFORMAT AS FREE” CDF directive to turn on free-format mode
» You use the “>>SOURCE FORMAT IS FREE” CDF directive to turn on free format mode

See Also...

11FEB2012 Version 1-3

GNU COBOL 2.0 Programmers Guide

Introduction

Coding Comments in Programs

1.6 The Compiler Directing Facility (CDF) 2.2

Alphanumeric Literals

1.5.1.2. Free Format Mode

As of the COBOL2002 standard, a second mode now exists for COBOL source code statements — Free Format Mode.

In this mode of operation, GNU COBOL statements may each be up to 255 characters long, with no specific
requirements as to what should appear in which columns.

The GNU COBOL compiler (cobc) can be commanded to operate in free format mode in any of the following ways:

» You run the compiler with the “-free” switch

> You use the >>SET SOURCEFORMAT AS FREE CDF directive to turn on free-format mode

> You use the >>SOURCE FORMAT IS FREE CDF directive to turn on free format mode

Using >>SET and >>SOURCE directives in your source code, you may switch back and forth between fixed and free

format mode at will.

See Also...
Coding Comments in Programs 1.6 The Compiler Directing Facility (CDF) 2.2
Alphanumeric Literals 1.8.2
1.5.2. Program Structure
Figure 1-2 — General Format of a GNU COBOL Program
[IDENTIFICATION DIVISION.]

PROGRAM-ID. | FUNCTION-ID.

ENVIRONMENT DIVISION.
[CONFIGURATION SECTION.
[INPUT-OUTPUT SECTION.

DATA DIVISION.

FILE SECTION.

WORKING -STORAGE SECTION.
LOCAL-STORAGE SECTION.
LINKAGE SECTION.

REPORT SECTION.

SCREEN SECTION.

Lo B W W o W W |

DECLARATIVES.
event-handling-logic
END-DECLARATIVES.

general-program-logic

name-1 [options]

program-configuration-specifications]
general-file-descriptions]

detailed-file-descriptions]
permanent-data-definitions]
temporary-data-definitions]
subprogram-argument-definitions |
report-definitions]
screen-layout-definitions]

PROCEDURE DIVISION [options]

[nested-opencobol-subprogram] ..
[END PROGRAM|FUNCTION name-1]

What you see here is the general format of a GNU COBOL program. Each program consists of up to four DIVISIONS
(major groupings of language statements that all relate to a common purpose). Not all divisions are needed in every
program, but they must be specified in the order shown when they are used.

11FEB2012 Version

GNU COBOL 2.0 Programmers Guide Introduction

This general program structure looks quite intimidating, but bear in mind that each DIVISION and SECTION you see
here serves a very specific function, and it is rare to find a program that needs each and every one of those functions!

1. Asingle file of COBOL source code may contain:
a. A portion of a program; these files are known as copybooks
b. Asingle program. In this case, the END PROGRAM / END FUNCTION statement is optional.

c. Multiple programs, separated from one another by END PROGRAM / END FUNCTION statements. The final
program in such a source code file need not have an END PROGRAM / END FUNCTION statement.

2. Program “B” may be nested inside program “A” by including program B’s source code at the end of program A’s
PROCEDURE DIVISION without an intervening END PROGRAM A / END FUNCTION A statement. For now, that’s
all that will be said about nesting. Regardless of how many programs comprise a single GNU COBOL source file
(see #1c), only a single output executable program will be generated from that source file when the file is
compiled.

3. Hereis a brief summary of the purpose of each DIVISION in a program:

DIVISION | Purpose
IDENTIFICATION | The IDENTIFICATION DIVISION provides basic identification of the program (or function) by
giving it a name. While the IDENTIFICATION DIVISION is required in all programs, the actual
“IDENTIFICATION DIVISION” header — as of the COBOL2002 standard —is not.
ENVIRONMENT | The ENVIRONMENT DIVISION defines the external computer environment in which the
program will be operating. This includes defining any files that the program may be accessing.
DATA The DATA DIVISION is used to define all data that will be processed by a program.
PROCEDURE The PROCEDURE DIVISION contains all executable program code.

See Also...
3.3 The IDENTIFICATION DIVISION

The ENVIRONMENT DIVISION
The DATA DIVISION
The PROCEDURE DIVISION

w

Copybooks 1.

Subprograms Subroutines vs Functions

=

~
[e)}

Details Of Nested Subprograms

o2 T I © 2 B I~ (R O¥)

1.6. In-Program Documentation (i.e. “Comments”)

The following chart documents how comments may be imbedded into GNU COBOL program source to provide
documentation.

Type of When in “FIXED” Mode... When in “FREE” Mode...
Comment
Blank lines Blank lines may be inserted as desired. Blank lines may be inserted as
desired.
Full-line An entire source line will be treated as a comment (and will An entire source line will be treated
comments be ignored by the compiler) by coding an asterisk (“*”) in as a comment (and will be ignored by
column seven (7). the compiler) by coding the sequence

“*>” starting in any column, as the
first non-blank characters on the line.

Full-line An entire source line will be treated as a comment by coding | There is no FREE-mode equivalent to
comments a slash (“/”) in column seven (7). In addition, most COBOL “”.

with form- compilers capable of generating source program listings will

feed issue a form-feed in the listing so that the “/” line is at the

top of a new page of the listing. The GNU COBOL compiler
(cobc) does not support this form-feed behavior, although it
does treat “/” lines as comments. The GNU COBOL
Interactive Compiler, or GCic, does support this form-feed
behavior when it generates program source listings! GCic is
a GNU COBOL program that provides a full-screen front-end
to the actual GNU COBOL compiler. You can see a
screenshot of it in section 1.3.3.9.

11FEB2012 Version 1-5

GNU COBOL 2.0 Programmers Guide Introduction

Type of When in “FIXED” Mode... When in “FREE” Mode...
Comment
Partial-line Any text following the character sequence “*>” on a source Any text following the character
comments line will be treated as a comment. The “*” must appear in sequence “*>” on a source line will
column seven (7) or beyond. be treated as a comment. The “*”
may appear in any column.
Comments By coding a “D” in column 7 (upper- or lower-case), an By specifying the character sequence
that may be otherwise valid GNU COBOL source line will be treated as a “>>D" (upper- or lower-case) as the
treated as comment by the compiler. first non-blank characters on a source
code line, an otherwise valid GNU COBOL
(typically for source line will be treated as a
debugging comment by the compiler.
purposes) Such statements may be compiled either by specifying the “-fdebugging-line” switch on the GNU
COBOL compiler or by adding the “WITH DEBUGGING MODE” clause to the SOURCE-COMPUTER
paragraph.
See Also...
‘ The SOURCE-COMPUTER Paragraph 4.1.1 ‘ ‘ Sample Program Listing: GCic 9.4

1.7. Use of Commas and Semicolons

A comma (“,”) or a semicolon (“;”) may be inserted into a GNU COBOL program to improve readability at any spot
where white space would be legal (except, of course, within alphanumeric literals). These characters are always

optional.

The use of comma characters can cause “confusion” to a COBOL compiler if the DECIMAL POINT IS COMMA clause is
used in SPECIAL-NAMES. The following statement, which calls a subroutine passing it two arguments (the numeric
constants 1 and 2):

CALL “SUBROUTINE” USING 1,2

would — with DECIMAL POINT IS COMMA in effect — actually be interpreted as a subroutine call with ONE argument
(the non-integer numeric constant 1.2).

See Also...

| The SPECIAL-NAMES Paragraph 4.1.4

1.8. Use of Literals

Literals are constant values that will not change during the execution of a program. There are two fundamental types
of literals — numeric and alphanumeric.

1.8.1. Numeric Literals

Numeric literals are numeric constants which may be used as array subscripts, as values in arithmetic expressions, or
in any procedural statement where a numeric value may be used. Numeric literals may take any of the following
forms:

» Integerssuchas 1, 56,2192 or -54.
» Non-integer fixed point values such as 1.12 or -2.95.

» Floating-point values using “Enn” notation such as 9.92E25 (representing 9.92 x 10%) or 5.7E-14
(representing 5.7 x 10"14). Both the mantissa (the number before the E) and the exponent (the number after
the E) may be explicitly specified as positive (with a +), negative or unsigned (and therefore implicitly
positive). A floating-point literal’s value must be within the range -1.7 x 10°® to +1.7 x 10°*® with no more
than 15 decimal digits of precision.

» Hexadecimal numeric literals such as H”1F” (1F5 = 31,(), h’22’ (22,6 = 34,,) or H'DEAD’ (DEAD;¢ = 57005,).
The H character may either be upper- or lower-case and either single quote (‘) or double-quote (“) characters
may be used. Hexadecimal numeric literals are limited to a maximum value of H’'FFFFFFFFFFFFFFF’ (a 64-bit
value).

11FEB2012 Version 1-6

GNU COBOL 2.0 Programmers Guide Introduction

1.8.2. Alphanumeric Literals

Alphanumeric literals are character strings suitable for display on a computer screen, printing on a report,
transmission through a communications connection or storage in PICTURE X or PICTURE A data items. These are NOT
valid for use in arithmetic expressions unless they can first be converted to their numeric computational equivalent via
the NUMVAL and NUMVAL-C intrinsic functions.

Alphanumeric literals may take any of the following forms:

» Any sequence of characters enclosed by a pair of single-quote (‘) characters or a pair of double-quote (“)
characters constitutes a string literal. The double-quote character (“) may be used as a data character within
an apostrophe-delimited string literal, and an apostrophe may be used as a data character within a double-
quote-delimited string literal. If an apostrophe character must be included as a data character within an
apostrophe-delimited string literal, express that character as two consecutive apostrophes (“). If a double-
quote character must be included as a data character within a double-quote-delimited string litaral, express
that character as two consecutive double-quotes (“”).

> Aliteral formed according to the same rules as for a string literal (above), but prefixed with the letter “2”
(upper- or lower-case) constitutes a zero-delimited string literal. These literals differ from ordinary string
literals in that they will be explicitly terminated with a byte of hexadecimal value 00. This facilitates the
“sharing” of such literals with C programsg.

> A hexadecimal literal such as X"4A4B4C” (4A4B4C,¢ = the ASCII string ‘JKL’), x'20" (20,6 = a space) or
X’30313233’ (30313233, = the ASCII string ‘0123’). The “X” character may either be upper- or lower-case
and either single quote (‘) or double-quote (“) characters may be used. These hexadecimal alphanumeric
literals should always consist of an even number of hexadecimal digits, because each character is
represented by eight bits worth of data (2 hex digits). Hexadecimal alphanumeric literals may be of almost
unlimited length.

Alphanumeric literals too long to fit on a single line may be continued to the next line in one of two ways:

1. If you are using Fixed Format Mode, the alphanumeric literal can be run right up to and including column 72.
The literal may then be continued on the next line anywhere after column 11 by coding another quote or
apostrophe (whichever was used to begin the literal originally). The continuation line must also have a
hyphen (-) coded in the indicator area (column 7). Here is an example:

1 2 3 4 5 6 7 8
12345678901234567890123456789012345678901234567890123456789012345678901234567890
01 LONG-LITERAL-VALUE-DEMO PIC X(60) VALUE “This is a long 1

- “iteral that must
- “ be continued.”

2. Regardless of whether the compiler is operating in Fixed or Free Format Mode, GNU COBOL allows
alphanumeric literals to be broken up into separate fragments. These fragments have their own beginning
and ending quote/apostrophe characters and are “glued together” at compilation time using “&” characters.
No continuation indicator is needed. Here’s an example:

1 2 3 4 5 6 7 8
12345678901234567890123456789012345678901234567890123456789012345678901234567890
01 LONG-LITERAL-VALUE-DEMO PIC X(60) VALUE “This is a” &

“ long literal that must “ &
“be continued.”.

If your program is using Free Format Mode, there’s less need to continue long alphanumeric literals because
statements may be as long as 255 characters.

Numeric literals may be split across lines just as alphanumeric literals are, using either of the above techniques and
both reserved and user-defined words can be split across lines too (using the first technique). The continuation of
numeric literals and user-defined/reserved words is provided merely to provide compatibility with older COBOL
versions and programs, but should not be used with new programs — it just makes for ugly-looking programs.

& IntheC programming language, strings must be terminated with a null byte (X’00’).

11FEB2012 Version 1-7

GNU COBOL 2.0 Programmers Guide Introduction
See Also...
Fixed-Format Source Code 1.5.1.1 The NUMVAL Intrinsic Function 6.1.14.58
Defining a Data Item’s PICTURE 5.2.1.6 The NUMVAL-C Intrinsic Function 6.1.14.59

1.9. Use of Figurative Constants

Figurative constants are reserved words that may be used in lieu of certain literals. In general, a figurative constant
may be freely used anywhere its corresponding value could have been used; when used, their value is interpreted
were an arbitrarily long sequence of the characters in question.

The following chart lists the GNU COBOL figurative constants and their respective equivalent values.

Figure 1-3 - Figurative Constants

Figurative Type of Equivalent Value

Constant Literal

ZERO, ZEROS, Numeric 0

ZEROES

SPACE, SPACES Alphanumeric | Blank

QUOTE, Alphanumeric | Double-quote character(s)

QUOTES

LOW-VALUE, Alphanumeric | The character whose value in the programs collating sequence is lowest. If a

LOW-VALUES program is using the ASCII collating sequence, this will represent a sequence of
characters comprised entirely of 0-bits.

HIGH-VALUE, Alphanumeric | The character whose value in the programs collating sequence is highest. If a

HIGH-VALUES program is using the ASCII collating sequence, this will represent a sequence of
characters comprised entirely of 1-bits.

NULL Alphanumeric | A character comprised entirely of zero-bits (regardless of the programs collating

sequence).

1.10. User-Defined Names

When you write GNU COBOL programs, you’ll need to create a variety of names to represent various aspects of the
program, the programs data and the external environment in which the program is running.

User-defined names may be composed from the characters “A” through “Z” (upper- and/or lower-case), “0” through
“9”, dash (“-“) and underscore (“_"). User-defined names may neither start nor end with hyphen or underscore

characters.

With the exception of procedure names, user-defined names must contain at least one letter.

When user-defined names are created as names for data, they will be referenced in this document under the term

identifier.

1.11. Use of LENGTH OF

Alphanumeric literals and identifiers may optionally be prefixed with the clause
“LENGTH OF”. In such cases, the literal actually is a numeric literal with a value
equal to the number of bytes in the alphanumeric literal. For example, the
following two GNU COBOL statements both display the same result (27):

01 Demo-Identifier

LENGTH OF

numeric-literal-1 }
identifier-1

PIC X(27).

DISPLAY LENGTH OF “This is a LENGTH OF Example”
DISPLAY LENGTH OF Demo-Identifier
DISPLAY 27

*> This is a 27-character data-item

The LENGTH OF clause on a literal or identifier reference may generally be used anywhere a numeric literal might be
specified, with the following exceptions:

11FEB2012 Version

1-8

GNU COBOL 2.0 Programmers Guide Introduction
1. In place of a literal on a DISPLAY statement.

2. As part of a WRITE or RELEASE statement’s FROM clause.

3. As part of the TIMES clause of a PERFORM.

11FEB2012 Version 1-9

GNU COBOL 2.0 Programmers Guide The Compiler-Directing Facility

2. The GNU COBOL Compiler Directing Facility [CDF]

The Compiler Directing Facility is a means of controlling the compilation of GNU COBOL programs , providing a
mechanism for dynamically setting or resetting certain compiler switches, introducing new source code from one or
more source code libraries, making dynamic source code modifications or conditionally processing / ignoring source
statements.

When the compiler is operating in FIXED mode, all CDF statements must begin in column eight (8) or beyond.

There are two types of supported CDF statements in GNU COBOL — Text Manipulation Statements and Compiler
Directives.

2.1. Text Manipulation Statements

CDF text manipulation statements are used to introduce new code into programs either with or without changes, or
may be used to modify existing statements already in the program.

2.1.1. The COPY Statement

Figure 2-1 - COPY Syntax

COPY copybook-name [I_lOF Iibrary-name—l} [SUPPRESS PRINTING |

==pseudo-text-1== ==pseudo-text-2==
| identifier-1 BY identifier-2
literal-1 | literal-2
REPLACING word-1 word-2 e
LEADING
| TRAILING } ==partial-word-1== BY ==partial-word-2==

COPY statements are used to import copybooks into a program.

GNU COBOL completely supports the use of copybooks. These are separate source files containing ANY GNU COBOL
SYNTAX WHATSOEVER, including other CDF statements.

1. COPY statements may be used anywhere within a COBOL program where the code contained within the copybook
would be syntactically valid.

2. The syntax diagram above places great emphasis on a period at the end of the COPY statement and any
REPLACING clauses it may have. A period is absolutely mandatory at the end of every COPY statement, even if
the COPY statement occurs within the scope of a command where a period might appear disruptive (such as
within the scope of an IF...END-IF sequence; the period on the COPY command will not, however, affect the
command scope in which the COPY occurs.

3. All COPY statements are resolved and the contents of the corresponding copybooks inserted into the program
source code before the actual compilation process begins.

4. The optional “REPLACING” clause allows any reserved words (word-1, word-2), data items (identifier-1, identifier-
2), literals (literal-1, literal-2) or whitespace-delimited phrases to be replaced. Any number of such substitutions
may be made as a copybook is included into a program.

See Also...

‘ Copybooks 1.3.3.3 ‘ ‘ How the Compiler Finds Copybooks 8.1.5

2.1.2. The REPLACE Statement

11FEB2012 Version 2-1

GNU COBOL 2.0 Programmers Guide The Compiler-Directing Facility

Format 1:
Figure 2-2 - REPLACE (Format 1) Syntax

==pseudo-text-1== B

REPLACE [ALSO | { [LEADING
JRAILING

==pseudo-text-2==

}==par‘tial—word- == BY ==partial-word-2==

Format 2:
Figure 2-3 - REPLACE (Format 2) Syntax

REPLACE [LAST] OFF .

The REPLACE statement provides a mechanism for changing all or part of one or more GNU COBOL statements.

1. The syntax diagrams above place great emphasis on a period at the end of the REPLACE. A period is absolutely
mandatory at the end of every REPLACE statement, even if the REPLACE statement occurs within the scope of a
command where a period might appear disruptive (such as within the scope of an IF...END-IF sequence; the
period on the REPLACE command will not, however, affect the command scope in which the REPLACE occurs.

2. The REPLACE statement can be used to make changes to program source code in much the same way as the
REPLACING option of the COPY statement can.

3. Once a Format 1 REPLACE statement is encountered in the compilation unit, it will remain in-effect — continuing
to make those source code changes it specifies — until one of the following occurs:

a. Another Format 1 REPLACE is encountered; in such a case, the change rules defined by the former Format 1
REPLACE will be replaced by those defined by the new REPLACE, unless the newly-encountered REPLACE
statement includes the “ALSO” keyword; in this instance, the REPLACE currently in-effect will be
“remembered” and then replaced by one combining the effects of the currently in-effect REPLACE and the
new one.

b. AFormat 2 REPLACE is encountered. If the Format 2 REPLACE includes the “LAST” keyword, the currently in-
effect REPLACE will be terminated and the most-recently “remembered” REPLACE will be re-activated. If the
Format 2 REPLACE does not include the “LAST” keyword, the currently in-effect REPLACE will be terminated
and all “remembered” prior REPLACEs will be discarded; no further changes will be made until such a point as
another Format 1 REPLACE (if any) is encountered.

c. Thelast line of source code in the compilation unit has been processed.

2.2. CDF Directives

Compiler Directing Facility directives, or statements, are denoted by the presence of a “>>" character sequence as part
of the statement name itself — are used to influence the process of program compilation.

2.2.1. The >>DEFINE Directive

Figure 2-4 - >>DEFINE Syntax

OFF
>>DEFINE | CONSTANT | cdf-variable-1 AS {PARAMETER

literal-1 } [OVERRIDE]

Use >>DEFINE to create CDF variables and (optionally) assign them either literal or environment variable values.

1. CDF variables defined in this way become undefined once an END PROGRAM or END FUNCTION directive is
encountered in the input source.

11FEB2012 Version 2-2

GNU COBOL 2.0 Programmers Guide The Compiler-Directing Facility

2. The >>DEFINE statement is one way to create CDF variables that may be processed by other CDF statements such
as >>IF. The >>SET statement provides another way to create them.

3. CDF variable names follow the rules for standard GNU COBOL user-defined names, and may not duplicate any CDF
reserved word. CDF variable names may duplicate COBOL reserved words, provided the CONSTANT option is not
specified, but such names are not recommended.

4. The CONSTANT option, valid only in conjunction with literal-1, defines a CDF variable that may be used within
your regular COBOL code as if it were a literal value. Without the CONSTANT option, the CDF variable may only
be referenced on other CDF statements.

5. The OFF option is used to create a variable without assigning it any value.

6. The PARAMETER option is used to create a variable whose value is that of the environment variable of the same
name. Note that this value assignment occurs at compilation time, not program execution time.

7. The “literal-1” option is used to specify a numeric or alphanumeric literal, as previously discussed.

8. Inthe absence of the OVERRIDE option, cdf-variable-1 must not yet have been DEFINEd.

9. When the OVERRIDE option is specified, cdf-variable-1 will be created with the specified value, if it had not yet
been DEFINEd, or it will be re-DEFINEd with the new value if it had already been DEFINEd.

10. See Also...
Literals 1.8 The >>SET CDF Statement 2.2.3

User-defined Names 1.10

2.2.2. The >>IF Directive

Figure 2-5 - >>IF Syntax

Conditionally process or ignore COBOL source

statements and/or CDF text-manipulation
statements depending upon the value of one or
more conditional expressions based upon CDF
variables.

>>IF constant-conditional-expression-1
[program-source-lines-1]

[»ELIF constant-conditional-expression-1 }

[program-source-lines-2 | 1. Each >>IF statement must be terminated by

an >>END-IF statement.

>>ELSE 2. There may be any number of >>ELIF clauses
[program-source-lines-n] following an >>IF, including zero.

>>END-IF

3.

4.

5.

The syntax of a constant-conditional expression is as follows:

Figure 2-6 - >>IF constant-conditional-expression Format

DEFINED
{ cdf-variable-1

, Is [NoT] {SET - variable-
literal-1 } cdf-re/ationa/—operator{ C_df variable-2 }
literal-2

The text-1, text-2 and text-n entries represent lines of source code that may consist of any number of GNU COBOL
statements and/or CDF text-manipulation statements (including none at all). Currently, text-1, text-2 and text-n
should not contain any CDF compiler directives (“>>" statements).

Each constant-conditional-expression will be evaluated in the sequence in which they are coded in the >>IF
statement and any >>ELIF clauses that may be present until one evaluates to TRUE. Once one of them evaluates
to TRUE, the corresponding text block of statements will be processed by the compiler and all others within the
scope of the >>IF statement will be skipped. If none of them evaluate to TRUE, the text-n block of statements
(following the >>ELSE clause) will be processed by the compiler and all others within the scope of the >>IF

11FEB2012 Version 2-3

GNU COBOL 2.0 Programmers Guide

The Compiler-Directing Facility

statement will be skipped. If none of the constant-conditional-expressions evaluate to TRUE and there is no
>>ELSE clause, then none of the text blocks of statements within the scope of the >>IF will be processed by the

compiler.

6. The following rules pertain to constant-conditional-Expressions

a. The DEFINED option tests for whether variable-1 has been defined, but not yet assigned a value (>>DEFINE ...
OFF); use the NOT option to test for the variable not being defined.

b. The SET option tests for whether variable-1 has been given a value, either via a >>SET statement or via a

>>DEFINE without the OFF option.

c. Two CDF variables, two literals or a single CDF variable and a single literal may be compared against each
other using a relational operator. Unlike the standard GNU COBOL IF statement, multiple comparisons
cannot be “AND”ed or “OR”ed together; you may nest a second >>IF inside the first, however, to simulate an
“AND” and an “OR” may be simulated via the >>ELIF option. Valid relational operators are as follows (you

may use either words or symbols):

GREATER THAN OR EQUAL TO >=

GREATER THAN >
LESS THAN OR EQUAL TO <=
LESS THAN <
EQUAL TO =

<> (meaning “not equal”)

2.2.3. The >>SET Directive

Figure 2-7 - >>SET Syntax

The >>SET statement provides an

FIXED
SOURCEFORMAT AS { }

FREE

NOFOLDCOPYNAME

UPPER }

FOLDCOPYNAME A
FOLDCOPYNARIE AS {J.QNER

[CONSTANT] cdf-variable-1 [AS literal-1]

alternate means of performing the
actions of the >>DEFINE and
>>SOURCE statements, as well as a
means of controlling the “-free” , “-
fixed” and “-ffold-copy” compiler
switches from within program source
code itself.

1. CDF variables defined in this way become undefined once an END PROGRAM or END FUNCTION directive is

encountered in the input source.

2. The FOLDCOPYNAME option provides the equivalent of specifying the compiler “~ffold-copy=xxx" switch, where

“xxx” is either “UPPER” or “LOWER”.

3. The NOFOLDCOPYNAME option turns off the effect of either the >>SET FOLDCOPYNAME statement or the “-

ffold-copy” switch.

If the “CONSTANT” option is used, the “AS” option must also be used.

5. The remaining options of the >>SET statement provide equivalent functionality to the >>DEFINE and >>SOURCE

statements, as shown in the following table:

>>SET Statement
>>SET cdf-variable

Equivalent >>DEFINE or >>SOURCE Statement
>>DEFINE cdf-variable AS OFF

>>SET cdf-variable AS literal-1

>>DEFINE cdf-variable AS literal-1

>>SET CONSTANT cdf-variable-1 AS literal-1

>>DEFINE CONSTANT cdf-variable-1 AS literal-1

>>SET SOURCEFORMAT AS FIXED

>>SOURCE FORMAT IS FIXED; sets the “-fixed”
compiler switch

>>SET SOURCEFORMAT AS FREE

>>SOURCE FORMAT IS FREE; sets the “-free” compiler
switch

11FEB2012 Version

2-4

GNU COBOL 2.0 Programmers Guide The Compiler-Directing Facility

See Also...

‘ Compiler Switches Reference 8.1.2 ‘

2.2.4. The >>SOURCE Directive

Figure 2-8 - >>SOURCE Syntax
The >>SOURCE statement puts the compiler into FIXED or FREE

FIXED source-code format mode. This, in effect, provides yet another
>>SOURCE FORMAT IS { FREE } mechanism for controlling the “-free” and “-fixed” compiler
- switches.

1. You may switch between FIXED and FREE mode as desired.
2. You may also use the >>SET statement to perform this function.
3. If the compiler is already in the specified mode, this statement will have no effect.

See Also...
‘ The >>SET CDF Statement 2.2.3 ‘ ‘ Compiler Switches Reference 8.1.2

2.2.5. The >>TURN Directive

Figure 2-9 - >>TURN Syntax

0N[WITHM\I]}

>>TURN { exception-name-1 [file-name-1] .. } .. CHECKING { OFF

The >>TURN statement, while accepted syntactically, is currently non-functional.

11FEB2012 Version 2-5

GNU COBOL 2.0 Programmers Guide

The Compiler-Directing Facility

11FEB2012 Version

2-6

GNU COBOL 2.0 Programmers Guide IDENTIFICATION DIVISION

3. IDENTIFICATION DIVISION

Figure 3-1 - IDENTIFICATION DIVISION Syntax

[IDENTIFICATION DIVISION.]

INITIAL
PROGRAM-ID. program-name [AS literal-1] IS { COMMON | PROGRAM .
RECURSIVE

FUNCTION-ID. function-name [AS literal-2] .

AUTHOR. comment-1.]
DATE-COMPILED. comment-2. |
DATE-WRITTEN. comment-3. |
INSTALLATION. comment-4. |
REMARKS. comment-5.]
SECURITY. comment-6.]

L T e T e TR e T e T |

The IDENTIFICATION DIVISION provides basic identification of the program by giving it a name, and optionally defining
some high-level characteristics.

1.
2.

While the actual IDENTIFICATION DIVISION header is optional, the PROGRAM-ID / FUNCTION-ID clause is not.

The AUTHOR, DATE-COMPILED, DATE-WRITTEN, FUNCTION-ID, INSTALLATION, PROGRAM-ID, REMARKS and
SECURITY clauses may be specified in any sequence. These clauses are supported by GNU COBOL only to provide
compatibility with programs written for the ANS1974 (or earlier) standards. As of the ANS1985 standard, these
clauses have been obsolete and should not be used in new programs.

The “~-Wobsolete” compilation switch will cause the GNU COBOL compiler to issue warnings messages if these (or
any other obsolete syntax) is used in a program.

Both literal-1 and literal-2 must be actual alphanumeric literals and may not be figurative constants.

The PROGRAM-ID and FUNCTION-ID clause serve to identify the program to the external (i.e. operating system)
environment. If there is no AS clause present, the program-name or function-name will serve as that external
identification. If there is an AS clause specified, that specified literal will serve as the external identification. For
the remainder of this document, that “external identification” will be referred to as the primary entry-point name.

The INITIAL, COMMON and RECURSIVE clauses are used only within subprograms serving as subroutines. The
COMMON clause should be used only within subprograms that are nested subprograms. The INITIAL clause, if
specified, guarantees the subprogram will be in its initial (i.e. compiled) state each and every time it is executed,
not just the first time. The COMMON clause may only be specified within a nested subprogram. A nested
subprogram declared as COMMON may be called from any nested program in the source file being compiled, not
just those “above” it in the nesting structure. The RECURSIVE clause, if any, marks a subprogram as being able to
invoke itself. User-defined functions are always RECURSIVE.

See Also...

[EEY

Subprograms Subroutines vs Functions 7.1 Recursive Subprogramming 7.7

)]

Details Of Nested Subprograms 7.

11FEB2012 Version 3-1

GNU COBOL 2.0 Programmers Guide ENVIRONMENT DIVISION

4. ENVIRONMENT DIVISION

Figure 4-1 - ENVIRONMENT DIVISION Syntax
The ENVIRONMENT

ENVIRONMENT DIVISION. DIVISION defines the
external computer
- - i tin which th
CONF IGURATION SECTION. environment in Which the
L . program will be operating.
[SOURCE-COMPUTER. compilation-computer-specifications] This includes defining any
[OBJECT-COMPUTER. execution-computer-specifications 1 files that the program may
[REPOSITORY. function-specifications] be accessing.
[SPECIAL -NAMES. program-configuration-specifications]
INPUT-OUTPUT SECTION.
[EILE-CONTROL. general-file-descriptions]
| [I-O-CONTROL. file-buffering-specifications 1]

1. If none of the features provided by the ENVIRONMENT DIVISION are required by a program, the ENVIRONMENT
DIVISION may be omitted from the program.

4.1. CONFIGURATION SECTION

Figure 4-2 - CONFIGURATION SECTION Syntax

CONFIGURATION SECTION.
[SOURCE-COMPUTER. compilation-computer-specifications
[OBJECT-COMPUTER. execution-computer-specifications
[REPOSITORY. function-specifications
[SPECIAL -NAMES . program-configuration-specifications

e e e bl

The CONFIGURATION DIVISION defines the computer system upon which the program is being compiled and
executed and also specifies any special environmental configuration or compatibility characteristics.

1. The CONFIGURATION SECTION is not allowed in a nested subprogram — nested programs will inherit the
CONFIGURATION SECTION settings of their parent program.

2. If none of the features provided by the CONFIGURATION SECTION are required by a program, the entire
CONFIGURATION SECTION may be omitted from the program.

3. The sequence in which the CONFIGURATION SECTION paragraphs are specified is irrelevant.

See Also...
‘ Details Of Nested Subprograms 7.6 ‘

4.1.1. SOURCE-COMPUTER Paragraph

Figure 4-3 - SOURCE-COMPUTER Paragraph Syntax

The SOURCE-COMPUTER paragraph defines
SOURCE - COMPUTER the computer upon which the program is

_ being compiled and provides one way in
computer-name [WITH DEBUGGING MODE] . which debugging code imbedded within the

program may be activated.

1. The SOURCE-COMPUTER paragraph is not allowed in a nested subprogram — nested programs will inherit the
SOURCE-COMPUTER settings of their parent program.

11FEB2012 Version 4-1

GNU COBOL 2.0 Programmers Guide ENVIRONMENT DIVISION

2. The value specified for computer-name is irrelevant, provided it is a valid COBOL word that does not match any
GNU COBOL reserved word. The computer-name may include spaces. This need not match the computer-name
used with the OBJECT-COMPUTER paragraph, if any

3. The WITH DEBUGGING MODE clause, if present, will signal the compiler that debugging lines — normally treated
as comments - are to be compiled.

4. Even without the WITH DEBUGGING MODE clause, it is still possible to compile debugging lines. Debugging lines
may also be compiled by specifying the “-fdebugging-line” switch to the GNU COBOL compiler.

5. See Also...
‘ Coding Comments in Programs 1.6 ‘ ‘ Details Of Nested Subprograms 7.6

4.1.2. OBJECT-COMPUTER Paragraph

Figure 4-4 - OBJECT-COMPUTER Paragraph Syntax

The OBJECT-COMPUTER

paragraph describes the

OBJECT-COMPUTER. computer upon which the
[computer-name 1] program will execute. This
paragraph is not merely
i _ WORDS documentation.
MEMORY SIZE IS integer-1 CHARACTERS

[PROGRAM COLLATING SEQUENCE IS alphabet-name-1]

[SEGMENT-LIMIT IS integer-2]

locale-name-1
LOCALE
CLASSTFICATION
[CHARACTER 57 user-DEFAULT]

SYSTEM-DEFAULT

The value specified for computer-name, if any, is irrelevant provided it is a valid COBOL word that does not match
any GNU COBOL reserved word. The computer-name may include spaces. This need not match the computer-
name used with the SOURCE-COMPUTER paragraph, if any

The OBJECT-COMPUTER paragraph is not allowed in a nested subprogram — nested programs will inherit the
OBJECT-COMPUTER settings of their parent program.

The MEMORY SIZE and SEGMENT-LIMIT clauses are supported for compatibility purposes, but are non-functional
in GNU COBOL.

The PROGRAM COLLATING SEQUENCE clause allows you to specify a customized character collating sequence to
be used when alphanumeric values are compared to one another. Data will still be stored in the characterset
native to the computer, but the logical sequence in which characters are ordered for comparison purposes can be
altered from that inherent to the computer’s native characterset. The alphabet-name-1 you specify needs to be
defined in the SPECIAL-NAMES paragraph.

If no PROGRAM COLLATING SEQUENCE clause is specified, the collating sequence implied by the characterset
native to the computer (usually ASCII) will be used.

The optional CHARACTER CLASSIFICATION clause may be used to specify a locale for the environment in which
the program will be executing, for the purpose of influencing the uppercase and lowercase mappings of
characters for the UPPER-CASE and LOWER-CASE intrinsic functions and the classification of characters for the
ALPHABETIC, ALPHABETIC-LOWER and ALPHABETIC-UPPER class tests.

The definitions of these classes will be taken from the cultural convention specification (LC_CTYPE) from the
specified locale.

11FEB2012 Version 4-2

GNU COBOL 2.0 Programmers Guide ENVIRONMENT DIVISION

The meanings of the four locale specifications are as follows:

» Jocale-name-1 references a LOCALE definition that must occur within the SPECIAL-NAMES paragraph.

> The keyword LOCALE refers to the current locale (in effect at the time the program is executed)

» The keyword USER-DEFAULT references the default locale specified for the user currently executing this
program.

» The keyword SYSTEM-DEFAULT denotes the default locale specified for the computer upon which the
program is executing.

Absence of a CHARACTER CLASSIFICATION clause will cause character classification to occur according to the
rules for the computer’s native characterset (ASCII, EBCDIC, ...).

See Also...
The SPECIAL-NAMES Paragraph 4.1.4 UPPER-CASE Intrinsic Function 6.1.7.87
Class Tests 6.1.4.2.2 Details Of Nested Subprograms 7.6
LOWER-CASE Intrinsic Function 6.1.7.39

4.1.3. REPOSITORY Paragraph

Figure 4-5 - REPOSITORY Paragraph Syntax

The REPOSITORY
REPOSITORY. paragra ph provides a
- mechanism for
controlling access to
the various built-in
intrinsic functions and
{ Intrinsic-function-name-2 any user-defined

Function-prototype-name-1 } [AS literal-1] functions that your
program will be using.

{ intrinsic-function-name-1

ALL } INTRINSIC

FUNCTION -

1. The REPOSITORY paragraph is not allowed in a nested subprogram — nested programs will inherit the
REPOSITORY settings of their parent program.

2. The “INTRINSIC” clause allows you to flag one or more (or ALL) built-in intrinsic functions as being usable without
the need to code the keyword “FUNCTION” in front of the function names.

3. Asan alternative to using the “FUNCTION ALL INTRINSIC” clause, you may instead compile your GNU COBOL
programs using the “~-ffunctions-all” switch.

4. The function-prototype-name-1 option is required to specify the name of a user-defined function your program
will be using. Optionally, should you desire, you may specify an alias name by which you will reference that user-

defined function. Should you wish, you may also use the “AS” clause to provide an alias name for a built-in
intrinsic function.

The following example accomplishes these objectives:

» It enables all intrinsic functions to be specified without the use of the “FUNCTION” keyword.

» It names two user-defined functions that will be used by the program: “MY-FUNCTION-1" and “USER-
DEFINED-FUNCTION-NUMBER-2"

» It specifies the alias names “SIGMA” for the intrinsic function “STANDARD-DEVIATION” and “UDF2” for
“USER-DEFINED-FUNCTION-NUMBER-2".

REPOSITORY.
FUNCTION ALL INTRINSIC.
FUNCTION MY-FUNCTION-1.
FUNCTION USER-DEFINED-FUNCTION-NUMBER-2 AS “UDF2”.
FUNCTION STANDARD-DEVIATION AS “SIGMA™.

11FEB2012 Version 4-3

GNU COBOL 2.0 Programmers Guide ENVIRONMENT DIVISION

A SPECIAL NOTE ABOUT USER-DEFINED FUNCTIONS — because you must name a user-defined function that your
program will be using in the REPOSITORY paragraph, you may always reference that function from your program’s
PROCEDURE DIVISION without needing to use the “FUNCTION” keyword.

See Also...

Details Of Nested Subprograms 7.6

Intrinsic Functions 6.1.7 ‘

User-defined Functions 7.4.2

4.1.4. SPECIAL-NAMES Paragraph

Figure 4-6 - SPECIAL-NAMES Paragraph Syntax
The SPECIAL-NAMES paragraph

provides a means for specifying
various program and operating
environment configuration options.

SPECTAL -NAMES .

—

CALL-CONVENTION integer-1 IS mnemonic-name-1]

CONSOLE IS CRT] 1. The SPECIAL-NAMES paragraph is
not allowed in a nested
subprogram — nested programs
will inherit the SPECIAL-NAMES

settings of their parent program.

CRT STATUS IS identifier-1]

CURRENCY SIGN IS literal-1]

CURSOR IS identifier-2] 2. The various clauses that may be
specified within the SPECIAL-

NAMES paragraph may be coded
in any order.

DECIMAL-POINT IS COMMA]

EVENT STATUS IS identifier-3]

LOCALE /ocale-name-1 IS literal-2] .. 3. Only the final clause specified
within the SPECIAL-NAMES
paragraph should be terminated

with a period.

NUMERIC SIGN IS TRAILING SEPARATE]

SCREEN CONTROL IS identifier-4 |

4. The CALL-CONVENTION clause

device-name-1 IS mnemonic-name-2 | .. ” X
allows a decimal integer,

feature-name-1 IS mnemonic-name-3] ..
alphabet-name-clause | ...
class-definition-clause] ...

switch-definition-clause] ..

representing a series of ON/OFF
switch settings, to be associated
with a mnemonic name which
may then be coded on CALL
statements. The switch settings
defined by this mnemonic will

then control how the linkage to
the subroutine (invoked by the
CALL statement that references
mnemonic-name-1) will be
handled.

c~m - ~~" -1 A" -1 """ T <" <" " "~ ™M ™M ™

symbolic-characters-clause] ..

5. The CONSOLE IS CRT clause, if specified, will cause any DISPLAY or ACCEPT statements lacking explicit “UPON”
clauses to be treated as full-screen DISPLAYs or ACCEPTs.

6. If the CRT STATUS clause is not specified, an implicit COB-CRT-STATUS identifier (with a PICTURE of 9(4)) will be
allocated for the purpose of receiving screen ACCEPT statuses. If it is specified, then identifier-1 must be defined
in the program as a PIC 9(4) field.

7. The CURRENCY SIGN clause may be used to define any single character as the currency sign used in PICTURE
symbol editing. The default currency sign is a dollar-sign (S).

8. The CURSOR IS clause allows you to specify a 4- or 6-character data item into which the cursor screen location at
the time a screen ACCEPT is satisfied. The value will be returned as rrcc or rrrccc, depending upon the length of
the specified identifier-2, where “rr” and “rrr” represent the row number (starting at zero) and “cc” and “ccc”
represent the column number (also starting at zero). There is no default data item allocated for this data if the
CURSOR IS clause is not specified.

11FEB2012 Version 4-4

GNU COBOL 2.0 Programmers Guide

ENVIRONMENT DIVISION

9. The DECIMAL POINT IS COMMA clause reverses the definition of the “,” and “.” characters when they are used as
PICTURE editing symbols and numeric literals. This can have unwanted side-effects.

10. The LOCALE clause may be used to associate external OS-defined locale names (literal-6) with an internal name
(locale-name-1) that may then be referenced within the program. Locale names are defined by the Operating
System and/or C compiler GNU COBOL will be utilizing on your computer.

The following table provides a list of possible locale codes, fgor example, that would be available on a Windows

computer running a GNU COBOL that was built utilizing the MinGW Unix-emulator and the GNU C compiler (gcc):

Figure 4-7 — Typical Locale Codes

af_ZA be_BY en_CA es_MX ga_lE kk_Kz nl_NL si_LK tn_ZA
am_ET bg_BG en_GB es_NI gbz_AF kl_GL nn_NO sk_SK tr_IN
ar_AE bn_IN en_IE es_PA gl_ES kn_IN ns_ZA sl_SI tr_TR
ar_BH bo_BT en_IN es_PE gsw_FR ko_KR oc_FR sma_NO tt_RU
ar_DZ bo_CN en_JM es_PR gu_IN kok_IN or_IN sma_SE ug_CN
ar_EG br_FR en_MY es_PY ha_Latn_NG | ky_KG pa_IN smj_NO uk_UA
ar_lQ bs_Cyrl_BA en_NZ es_SV he_IL Ib_LU pl_PL smj_SE ur_PK
ar_JO bs_Latn_BA | en_PH es_US hi_IN lo_LA ps_AF smn_Fl uz_Cyrl_Uz
ar_Kw ca_ES en_SG es_UY hr_BA It_LT pt_BR sms_Fl uz_Llatn_Uz
ar_LB cs_CZ en_TT es_VE hr_HR Iv_LV pt_PT sq_AL vi_VN
ar_LY cy_GB en_US et_EE hu_HU mi_NZ qut_GT sr_Cyrl_BA wen_DE
ar_MA da_DK en_ZA eu_ES hy_AM mk_MK quz_BO sr_Cyrl_CS wo_SN
ar_OM de_AT en_ZW fa_IR id_ID ml_IN quz_EC sr_Latn_BA xh_ZA
ar_QA de_CH es_AR fi_Fl ig_NG mn_Cyrl_MN quz_PE sr_Latn_CS yo_NG
ar_SA de_DE es_BO fil_PH ii_CN mn_Mong_CN rm_CH sv_Fl zh_CN
ar_SY de_LI es_CL fo_FO is_IS moh_CA ro_RO sv_SE zh_HK
ar_TN de_LU es_CO fr_BE it_CH mr_IN ru_RU sw_KE zh_MO
ar_YE dsb_DE es_CR fr_CA it IT ms_BN rw_RW syr_SY zh_SG
arn_CL dv_MV es_DO fr_CH ju_Cans_CA ms_MY sa_IN ta_IN zh_TW
as_IN el_GR es_EC fr_FR iu_Latn_CA mt_MT sah_RU te_IN zu_ZA
az_Cyrl_AZ | en_029 es_ES fr_LU ja_JP nb_NO se_Fl tg_Cyrl_TJ
az_Llatn_AZ | en_AU es_GT fr_MC ka_GE ne_NP se_NO th_TH tk_TM
ba_R en_BZ es_HN fy_NL kh_KH nl_BE se_SE tmz_Latn_DZ

11. The NUMERIC SIGN IS TRAILING SEPARATE specification causes all signed numeric USAGE DISPLAY data items to
be created as if the SIGN IS TRAILING SEPARATE CHARACTER clause was included in their definitions.

12. While the SCREEN CONTROL and EVENT STATUS clauses are clearly noted at compilation time as being
unsupported, the CURSOR IS clause is not; currently, however, it appears to be non-functional at runtime.

13. The “device-name IS mnemonic-name-2" clause allows you to specify an alternate name for one of the built-in
GNU COBOL device names specified before the “IS”. The list of device names built-into GNU COBOL, and the
physical device associated with that name, are as follows:

Figure 4-8 - Built-In GNU COBOL Device Names

Built-In GNU COBOL Device Name Associated Actual Device

CONSOLE This is the (screen-mode) display of the PC or Unix
system

STDIN Standard system input (pipe 0). On a PC or UNIX

SYSIN system, this is typically the keyboard. Can be specified

SYSIPT to a GNU COBOL program from a file by adding the
sequence “0< filename” to the end of the programs
execution command.

PRINTER Standard system output (pipe 1). On a PC or UNIX

STDOUT system, this is typically the display. Can be sent to a file

SYSLIST by adding the sequence “1> filename” to the end of the

SYSLST programs execution command.

SYSoOUT

STDERR Standard system error output (pipe 2). OnaPCor

SYSERR UNIX system, this is typically the display. Can be sent
to a file by adding the sequence “2> filename” to the
end of the programs execution command.

14. The “feature-name-1 1S mnemonic-name-3" clause allow for mnemonic names to be assigned to up to the 13

printer channel (i.e. vertical page positioning) position feature names “C01” through “C12” and “CSP”. Once a
channel position has been assigned a mnemonic name, statements of the form “WRITE record-name AFTER

11FEB2012 Version

4-5

GNU COBOL 2.0 Programmers Guide ENVIRONMENT DIVISION

ADVANCING mnemonic-name-3"° may be coded to write the specified print record at the channel position
assigned to mnemonic-name-3.

Printers supporting channel positioning are generally mainframe-type line printers. When writing to printers that
do not support channel positioning, a formfeed will be issued to the printer.

The CSP positioning option stands for “No Spacing”. Testing on a MinGW build of GNU COBOL shows that this too
results in a formfeed being issued.

See Also...
Using Commas and Semicolons 1.7 The ACCEPT Statement (Screen Data) 6.4.1.4
OBJECT-COMPUTER And LOCALEs 4.1.2 The CALL Statement 6.4.5
Defining a Data Item’s PICTURE 5.2.1.6 Details Of Nested Subprograms 7.6

4.1.4.1. The alphabet-name Clause

Figure 4-9 - The SPECIAL-NAMES "alphabet-name" Clause

The ALPHABET clause provides a means for

ALPHABET alphabet-name-1 IS relating a name to a specified character code set

- or collating sequence, including those you define
NATIVE yourself using the “literal-1” option. You may
STANDARD- 1 specify an alphanumeric literal for any of the
STANDARD- 2 literal-1, literal-2 or literal-3 specifications. You

may also specify any of the figurative constants
SPACE, SPACES, ZERO, ZEROS, ZEROES, QUOTE,

THRU | THROUGH literal-2 QUOTES, HIGH-VALUE, HIGH-VALUES, LOW-
literal-1 [{ }]

{ ALSO literal-3 } .. VALUE or LOW-VALUES.
1. Thereserved word “THROUGH” may be used

| EBCDIC

interchangeably with “THRU”.

4.1.4.2. The class-name Clause

Figure 4-10 - The SPECIAL-NAMES "class-name" Clause

User-defined classes are defined using the
CLASS clause.
CLASS class-name-1 IS

{ literal-1 [THRU|THROUGH literal-2] } ..

The reserved word THROUGH may be used interchangeably with THRU.
Both literal-1 and literal-2 must be alphanumeric literals of length 1.

The literal(s) specified on that clause define the possible characters that may be found in a data item’s value in
order to be considered part of the class.

For example, the following defines a class called “Hexadecimal”, the definition of which specifies the only
characters that may be present in an alphanumeric data item if that data item is to be part of the “Hexadecimal”
class:

CLASS Hexadecimal IS €9’ THRU ‘9’
‘A> THRU ‘F’
‘a’> THRU ‘f’

See section for an example of how this user-defined class might be used.

° BEFORE ADVANCING is possible also. See the WRITE statement in section 6.2.50 for additional information.

11FEB2012 Version 4-6

GNU COBOL 2.0 Programmers Guide ENVIRONMENT DIVISION

See Also...

Class Tests 6.1.4.2.2 ‘

4.1.4.3. The switch-definition Clause

Figure 4-11 - The SPECIAL-NAMES "switch-definition" Clause

The switch-definition clause associates a condition-name with

switch-name-1 [IS mnemonic-name-1] a run-time execution switch so that the status of that switch

may be tested from within a program.
H ON STATUS IS condition-name-1 } }

OFF STATUS IS condition-name-2

1. The valid switch-names are SWITCH-0 through SWITCH-15.

2. Ifthe program is compiled with the “-fsyntax-extension” compiler switch, the switch names “SW0” through
“SW15” are also valid; they correspond to “SWITCH-0" through “SWITCH-15", respectively.

3. At execution time, each switch will be associated with an environment variable named “COB_SWITCH_n", where
“n” will have the value “0” through “15”. Any of these sixteen environment variables that have the value “ON”
(regardless of upper- or lower-case value) will be considered to be set “on”. Any of these sixteen environment
variables having no value at all or a value other than “ON” will be considered “off”.

4. Each specified switch must have at least one of a “IS mnemonic-name”, ON STATUS or an OFF STATUS option
defined for it (otherwise there will be no way to reference the switch from within a GNU COBOL program).

5. The “IS mnemonic-name” syntax provides a means for setting the switch to either an ON or OFF value via the SET
statement.

6. The ON STATUS and OFF STATUS syntax provides a way of associating a condition-name with either the on or off
status of the switch, so that status may be tested at execution time via the IF statement.

See Also...
Condition Names 6.1.4.2.1 The IF Statement 6.2.21
Switch-Status Conditions 6.1.4.2.4 The SET SWITCH Statement 6.4.39.7

4.1.4.4. The symbolic-characters clause

Figure 4-12 - The SPECIAL-NAMES "symbolic-characters" Clause

The SYMBOLIC CHARACTERS

SYMBOLIC CHARACTERS clause may be used to define your

own figurative constants.
{ { symbolic-character-1 } .. ARE { integer-1 } .. } ..

[IN alphabet-name-1]

4.

The word IS may be substituted for the word ARE, if desired.

There must be exactly as many integer-1 values specified after the word ARE (or IS) as there are symbolic-
character-1 names specified before it.

Each symbolic character name will be associated with the corresponding “integer-1”th character in the alphabet
named in the IN clause. The integer values are selecting characters from the alphabet by their ordinal position
and not by their numeric value; thus, an integer of 15 will select the 15" character in the specified alphabet,
regardless of the actual numeric value of the bit pattern that constitutes that character.

If no alphabet-name-1 is specified, the systems native characterset will be assumed.

The following two code examples define the same set of figurative constant names for five ASCII control characters
(assuming that ASClII is the system’s native characterset). The two examples are identical in their effects, even though
the manner in which the figurative constants are defined is different.

11FEB2012 Version 4-7

GNU COBOL 2.0 Programmers Guide

ENVIRONMENT DIVISION

SPECIAL-NAMES.

SYMBOLIC CHARACTERS NUL IS 1

SPECIAL-NAMES.
SYMBOLIC CHARACTERS NUL SOH BEL DC1 DC2

SOH IS 2
BEL IS 8
DC1 IS 18
DC2 IS 19.

4.2. INPUT-OUTPUT SECTION

Figure 4-13 - INPUT-OUTPUT SECTION Syntax

[EILE-CONTROL.
[I-0-CONTROL.

INPUT-OUTPUT SECTION.

general-file-descriptions
file-buffering-specifications

]
]

ARE 1 2 8 18 19.

The INPUT-OUTPUT section provides
for the definition of any files the
program will be accessing as well as
control of the I/0 buffering process
against those files.

1. If the compiler “config” file you are using has “relaxed-syntax-check” set to “yes”, the FILE-CONTROL and I-O-
CONTROL paragraphs may be specified without the INPUT-OUTPUT SECTION header having been specified.

2. Ifthe program uses no files, it needs neither a FILE-CONTROL or I-O-CONTROL paragraph.

See Also...

GNU COBOL “config” Files 8.1.6

11FEB2012 Version

4-8

GNU COBOL 2.0 Programmers Guide ENVIRONMENT DIVISION
4.2.1. File SELECT Statement
Figure 4-14 — File SELECT Statement Syntax
The SELECT
SELECT [[NOT] OPTIONAL] file-name-1 statement of
r - - the FILE-
DISC |DISK CONTROL
TAPE paragraph
RANDOM) createsa
ASSIGN TO [{ §$£§ﬁ¥%L=}} | DISPLAY [{{Ze“g? , }} defintion of a
—_= KEYBOARD identifier- file and links
LINE ADVANCING :ﬁFi?B?:
PRINTER efinition to
- - - the external
[| FILE . . , . operating
I { SORT } STATUS 1IS identifier-2 [identifier-3] } system

[COLLATING SEQUENCE IS alphabet-name-1 |

[organization-clause 1 .

[LOCK MODE IS
WITH LOCK ON MULTIPLE RECORDS
EXCLUSIVE WITH LOCK ON RECORD
MANUAL WITH ROLLBACK
AUTOMATIC
[RECORD DELIMITER IS STANDARD-1]
[RESERVE integer-1 AREAS]
ALL OTHER
SHARING WITH 1 NO OTHER
READ ONLY

environment.

What is shown
here are those
clauses of the
SELECT
statement
that are
common to all
types of files.

Upcoming
sections will
discuss special
SELECT
clauses that
only pertain to
certain types
of files.

1. The COLLATING SEQUENCE, RECORD DELIMITER, RESERVE and SHARING WITH ALL OTHER clauses, as well as the
specification of a secondary FILE-STATUS field and LOCK MODE ... WITH ROLLBACK, while syntactically

recognized, are not currently supported by GNU COBOL.

2. The OPTIONAL clause, to be used only for files that will be used to provide input data to the program, indicates
the file may or may not actually be available at run-time. Attempts to OPEN an OPTIONAL file when the file does
not exist will receive a special non-fatal file status value (see status 05 in Figure 4-15 below) indicating the file is
not available; a subsequent attempt to READ that file will return an AT END (end-of-file) condition. Optionally,
files may be designated as NOT OPTIONAL, if desired. This is useful when specifying the “-foptional-file” compiler

switch.

3. The file-name-1 value that you specify will be the name by which you will reference the file within your program.
This name should be formed according to the rules for user-defined names.

4. The EXTERNAL option flags the file as being sharable with other GNU COBOL programs that include the same
SELECT statement. Those other programs must either be executed as subprograms from this one or must execute
this one as a subprogram. Once an EXTERNAL file has been OPENed by one of the programs SELECTing the
EXTERNAL file, that file is available for READing, WRITEing and the like from any of the programs that share it.
Similarly, once one program CLOSEs the file, no other program sharing that file may access the file further unless

the file is re-OPENed.

11FEB2012 Version

GNU COBOL 2.0 Programmers Guide ENVIRONMENT DIVISION

5. The DYNAMIC option specifies that the actual pathname of the file being SELECTed will be specified at execution
time as the contents of identifier-1. If you use the DYNAMIC option, you must specify identifier-1. If you specify
identifier-1 on the SELECT, the DYNAMIC option will be assumed if not specified.

6. Optionally, you may define the type of device the file will be assigned to, as follows.

a. The DISK and DISC devices (the two are synonymous with one another) are typically used in conjunction with
a “literal-1” or “identifier-1” option. If neither the “literal-1" nor “identifier-1” option is provided, the SELECT
will reference a file named “file-name-1" in whatever folder is current at the time the file is OPENed.

b. The TAPE and RANDOM devices behave in a manner similar to DISC (or DISK) and are included into GNU
COBOL to facilitate the compilation of COBOL source from other COBOL implementations.

c. The KEYBOARD, DISPLAY and PRINTER devices refer to the PC keyboard and display and STDOUT devices,
respectively. When either literal-1 or identifier-1 are specified with these device types, the effect will be the
same as if DISC or DISK had been used. When neither literal-1 nor identifier-1 are used, these devices will be
associated with the STDIN (KEYBOARD)and STDOUT (DISPLAY or PRINTER) devices, respectively (see Figure
4-8).

d. Afile ASSIGNed to the PRINTER device must be defined with an ORGANIZATION IS LINE SEQUENTIAL (if no
ORGANIZATION is specified, LINE SEQUENTIAL will be assumed).

e. The LINE ADVANCING device defines the file as a special form of LINE SEQUENTIAL file. When this device is
used, either literal-1 or identifier-1 must be specified.

7. The “identifier-1" option references an alphanumeric data item, the contents of which at the time the file is
OPENed will define the path and filename of the actual data file to be processed.

8. Ifthe “literal-1” option is used on the ASSIGN clause, it defines the linkage of the COBOL file to an actual
operating system file as follows:

a. If an environment variable named “DD_literal-1" exists, its value will be treated as the full path/filename of
the file. If not, then ...

b. If an environment variable named “dd_literal-1” exists, its value will be treated as the full path/filename of
the file. If not, then ...

c. Ifan environment variable named “literal-1"exists, its value will be treated as the full path/filename of the
file. If not, then...

d. The literal itself will be treated as the full path/filename to the file.

This behavior will be influenced by the “filename-mapping” setting in the config file you are using when
compiling your programs. The behavior stated above applies only if “filename-mapping: yes” is in-effect. If
“filename-mapping: no” is used, only the last option (treating the literal itself as the full name of the file) is
possible.

9. The FILE STATUS or SORT STATUS clause (they are both equivalent and only one or the other, if any, should be
specified) is used to specify the name of a PIC 9(2) data item into which an I/O status code will be saved after
every /0 verb that is executed against the file. This does not actually allocate the data item — you still need to
allocate the item yourself somewhere in the DATA DIVISION.

10. Possible status codes that can be returned to a FILE STATUS data item are as follows:

Figure 4-15 — FILE STATUS Values

i/t:ltuu: Meaning \SltaaI::as Meaning

00 Success 39 Conflicting attribute

02 Success (Duplicate Record Key Written) 41 File already OPEN

05 Success (Optional File Not Found) 42 File not OPEN

07 Success (No Unit) 43 Read not done

10 End of file reached if READing forward or 44 Record overflow
beginning-of-file reached if READing
backward

14 Out of key range 46 READ error

11FEB2012 Version 4-10

GNU COBOL 2.0 Programmers Guide

ENVIRONMENT DIVISION

21 Key invalid 47 OPEN INPUT denied

22 Attempt to duplicate key value 48 OPEN OUTPUT denied

23 Key not found 49 OPEN I-O denied

30 Permanent 1/O error 51 Record locked

31 Inconsistent filename 52 End of page

34 Boundary violation 57 LINAGE specifications invalid
35 File not found 61 File sharing failure

37 Permission denied 91 File not available

38 Closed with lock

11. The LOCK and SHARING clauses define the conditions under which this file will be usable by other programs

executing concurrently with this one.

See Also...
Types of Files 1.3.3.5 The OPEN Statement 6.4.29
User-defined Names 1.10 The READ Statement 6.4.31
File Sharing 6.1.9.1 Compiler Switches Reference 8.1.2
Record Locking 6.1.9.2 GNU COBOL “config” Files 8.1.6
Handling End-of-File Conditions (AT END) 6.1.12.1

4.2.1.1. SELECT Without an “organization-clause”

A SELECT statement coded without an ORGANIZATION explicitly coded will be handled as if the following

ORGANIZATION clause had been specified:

ORGANIZATION IS RECORD BINARY SEQUENTIAL
ACCESS MODE IS SEQUENTIAL
PADDING CHARACTER IS “

4.2.1.2. ORGANIZATION SEQUENTIAL Files

Figure 4-16 - SELECT “organization-options” For SEQUENTIAL Files

[ORGANIZATION IS] RECORD BINARY SEQUENTIAL
[ACCESS MODE IS SEQUENTIAL]

Files declared as ORGANIZATION RECORD
BINARY SEQUENTIAL will consist of
records with no explicit end-of-record
delimiter character sequences; records in
such files are “delineated” by a calculated
byte-offset (based on record length) into
the file .

1. The keyword “ORGANIZATION” is optional to provide compatibility with those (few) COBOL implementations that
consider that word to be optional. Most COBOL implementations do require the word ORGANIZATION, so it

should be used in new programs.

2. These files cannot be prepared with any standard text-editing or word processing software as all such programs
will imbed delimiter characters at the end of records. Such files may contain either USAGE DISPLAY or USAGE
COMPUTATIONAL (of any variety) data since no character sequence can be accidentally interpreted as an end-of-

record delimiter.

3. Both fixed- and variable-length record formats are supported. Variable-length records will always be written in

their maximum size, however.

4. Specifying ORGANIZATION IS RECORD BINARY SEQUENTIAL is the same as specifying ORGANIZATION

SEQUENTIAL.

5. The ACCESS MODE IS SEQUENTIAL clause is optional because, if absent, it will be assumed anyway for this type of
file. The internal structure of RECORD BINARY SEQUENTIAL files is such that the data in those files can only be

11FEB2012 Version

4-11

GNU COBOL 2.0 Programmers Guide ENVIRONMENT DIVISION

processed in a sequential manner; in order to read the 100" record in such a file, for example, you first must read
records 1 through 99.

6. SEQUENTIAL files are processed using the CLOSE, COMMIT, DELETE, MERGE, OPEN, READ, REWRITE, SORT,
UNLOCK and WRITE statements.
See Also...
Types of Files 1.3.3.5 The OPEN Statement 6.4.29
Storage Format of Data (USAGE) 5.2.1.11 The READ Statement 6.4.31
Handling End-of-File Conditions (AT END) 6.1.12.1 The REWRITE Statement 6.4.36
The CLOSE Statement 6.4.7 The SORT Statement (File Sort) 6.4.40.1

The COMMIT Statement 6.4.8 The UNLOCK Statement 6.4.48
The DELETE Statement 6.4.11 The WRITE Statement 6.4.50

The MERGE Statement 6.4.25

4.2.1.3. ORGANIZATION LINE SEQUENTIAL Files

Figure 4-17 - SELECT "organization-options" for LINE SEQUENTIAL Files

Files declared as ORGANIZATION LINE

an end-of-record delimiter character or character
[ACCESS MODE IS SEQUENTIAL] sequence.

[PADDING CHARACTER IS {’_ite"”.'.l } }
identifier-1

1. The keyword “ORGANIZATION” is optional to provide compatibility with those (few) COBOL implementations that
consider that word to be optional. Most COBOL implementations do require the word ORGANIZATION, so it
should be used in new programs.

2. Thisis the only ORGANIZATION valid for files that are assigned to the PRINTER device.

3. These files could be prepared with any standard text-editing or word processing software capable of writing text
files. Such files should not contain any USAGE COMPUTATIONAL or BINARY (of any variety) data since such fields
could accidentally contain byte sequences that could be interpreted as an end-of-record delimiter.

4. Both fixed- and variable-length record formats are supported.

5. The end-of-record delimiter sequence will be X’0A’ (an ASCII line-feed character) or a X’0DOA’ (an ASCII carriage-
return/line-feed sequence).

6. The PADDING CHARACTER clause, while syntactically recognized, is currently non-functional.

7. When reading a LINE SEQUENTIAL file, records in excess of the size implied by the file’s FD will be truncated while
records shorter than that size will be padded to the right with SPACES.

8. The ACCESS MODE IS SEQUENTIAL clause is optional because, if absent, it will be assumed anyway for this type of
file. The internal structure of LINE SEQUENTIAL files is such that the data in those files can only be processed in a
sequential manner; in order to read the 100" record in such a file, for example, you first must read records 1
through 99.

9. Files ASSIGNed to PRINTER or CONSOLE should be specified as ORGANIZATION LINE SEQUENTIAL.

10. LINE SEQUENTIAL files are processed using the CLOSE, COMMIT, DELETE, MERGE, OPEN, READ, REWRITE, SORT,
UNLOCK and WRITE statements.

See Also...
Types of Files 1.3.3.5 The OPEN Statement 6.4.29
Storage Format of Data (USAGE) 5.2.1.11 The READ Statement 6.4.31

11FEB2012 Version 4-12

GNU COBOL 2.0 Programmers Guide ENVIRONMENT DIVISION
Handling End-of-File Conditions (AT END) 6.1.12.1 The REWRITE Statement 6.4.36
The CLOSE Statement 6.4.7 The SORT Statement (File Sort) 6.4.40.1
The COMMIT Statement 6.4.8 The UNLOCK Statement 6.4.48
The DELETE Statement 6.4.11 The WRITE Statement 6.4.50

The MERGE Statement 6.4.25

ORGANIZATION RELATIVE Files

Figure 4-18 - SELECT “organization options” For RELATIVE Files

[ORGANIZATION IS] RELATIVE

SEQUENTTAL

ACCESS MODE Is | DYNAMIC
RANDOM

[RELATIVE KEY IS identifier-1]

RELATIVE files are files with an internal organization such
that records may be processed in a sequential manner
based upon their physical location in the file orin a
random manner by allowing records to be read, written
or updated by specifying the relative record number in
the file.

1. The keyword “ORGANIZATION” is optional to provide compatibility with those (few) COBOL implementations that
consider that word to be optional. Most COBOL implementations do require the word ORGANIZATION, so it

should be used in new programs.

2. ORGANIZATION RELATIVE files cannot be assigned to CONSOLE, DISPLAY, LINE ADVANCING or PRINTER.

3. The RELATIVE KEY clause is optional only if ACCESS MODE SEQUENTIAL is specified.

4. While records in a ORGANIZATION RELATIVE file may be defined as having variable-length records, the file will be
structured in such a manner as to reserve the maximum possible space for each record.

5. An ACCESS MODE of SEQUENTIAL indicates that the records of the file will be processed in a sequential manner,

according to their physical sequence in the file.

An ACCESS MODE of RANDOM means that records will be processed in random sequence by specifying their
record number in the file every time the file is read or written.

A DYNAMIC ACCESS MODE indicates the program will switch back and forth between SEQUENTIAL and RANDOM
mode during execution. The file starts out initially in SEQUENTIAL mode when first OPENed but the program may
use the START verb to switch between the other two access modes.

6. The default ACCESS MODE is SEQUENTIAL.

7. The RELATIVE KEY data item is a numeric data item that cannot be a field within records of this file. Its purpose is
to return the current relative record number of a RELATIVE file that is being processed in SEQUENTIAL access
mode and to be a retrieval key that specifies the relative record number to be read or written when processing a

RELATIVE file in RANDOM access mode.

8. RELATIVE files are processed using the CLOSE, COMMIT, DELETE, MERGE, OPEN, READ, REWRITE, SORT, START,

UNLOCK and WRITE statements.

See Also...

Types of Files 1.3.3.5 The READ Statement 6.4.31

Handling End-of-File Conditions (AT END) 6.1.12.1 The REWRITE Statement 6.4.36
The CLOSE Statement 6.4.7 The SORT Statement (File Sort) 6.4.40.1

The COMMIT Statement 6.4.8 The START Statement 6.2.41

The DELETE Statement 6.4.11 The UNLOCK Statement 6.4.48

The MERGE Statement 6.4.25 The WRITE Statement 6.4.50

The OPEN Statement 6.4.29

11FEB2012 Version

4-13

GNU COBOL 2.0 Programmers Guide ENVIRONMENT DIVISION

4.2.1.4. ORGANIZATION INDEXED Files

Figure 4-19 - SELECT “organization options” For INDEXED Files

[ORGANIZATION IS] INDEXED

SEQUENTTIAL
ACCESS MODE IS | DYNAMIC
RANDOM

RECORD KEY IS identifier-1 [{ -

= }identifier—z }
SOURCE IS

ALTERNATE RECORD KEY IS identifier-3
[WITH DUPLICATES]

[{ = = } identifier-4 }

INDEXED files, like RELATIVE files, may have their records processed either sequentially or in a random manner.
Unlike RELATIVE files, however, the actual location of a record in an INDEXED file is based upon the value(s) of one or
more alphanumeric fields within records of the file.

For example, an INDEXED file containing product data might use the product identification code as a RECORD KEY.
This means you may read, write or update the “A6G4328”th record or the “Z8X7723”th record directly, based upon
the product id value of those records!

1. The keyword “ORGANIZATION” is optional to provide compatibility with those (few) COBOL implementations that
consider that word to be optional. Most COBOL implementations do require the word ORGANIZATION, so it
should be used in new programs.

2. ORGANIZATION INDEXED files cannot be assigned to CONSOLE, DISPLAY, LINE ADVANCING or PRINTER.

3. The specification of so-called “split keys”, while syntactically recognized (the “= / SOURCE IS” clauses), are not
currently supported by GNU COBOL.

4. An ACCESS MODE of SEQUENTIAL indicates that the records of the file will be processed in a sequential manner
with respect to the values of the RECORD KEY or an ALTERNATE RECORD KEY.

An ACCESS MODE of RANDOM means that records will be processed in random sequence by accessing the record
with specific RECORD KEY or ALTERNATE RECORD KEY values.

DYNAMIC ACCESS MODE allows the file will be processed either in RANDOM or SEQUENTIAL mode; the program
may switch between the two modes as needed. The START verb is used to make the switch between modes.

5. The default ACCESS MODE is SEQUENTIAL.

6. The PRIMARY KEY clause defines the field(s) within the record used to provide the primary access to records
within the file. No two records may have the same PRIMARY KEY field value.

7. The ALTERNATE RECORD KEY clause, if used, defines an additional field within the record that provides an
alternate means of directly accessing records or an additional field by which the file’s contents may be processed
sequentially. You have the choice of allowing records to have duplicate alternate key values, if necessary.

8. There may be multiple ALTERNATE RECORD KEY clauses, each defining an additional alternate key for the file.

9. INDEXED files are processed using the CLOSE, COMMIT, DELETE, MERGE, OPEN, READ, REWRITE, SORT, START,
UNLOCK and WRITE statements.

See Also...
Types of Files 1.3.3.5 The READ Statement 6.4.31
Handling End-of-File Conditions (AT END) 6.1.12.1 The REWRITE Statement 6.4.36
The CLOSE Statement 6.4.7 The SORT Statement (File Sort) 6.4.40.1

11FEB2012 Version 4-14

GNU COBOL 2.0 Programmers Guide ENVIRONMENT DIVISION

The COMMIT Statement 6.4.8 The START Statement 6.2.41
The DELETE Statement 6.4.11 The UNLOCK Statement 6.4.48
The MERGE Statement 6.4.25 The WRITE Statement 6.4.50

The OPEN Statement 6.4.29

4.2.2. 1-0-CONTROL Paragraph

Figure 4-20 - I-O-CONTROL Paragraph Syntax

The I-O-CONTROL Paragraph can be used

I-0- CONTROL. to optimize certain aspects of file
processing.
RECORD 1. The SAME SORT AREA and SAME
SAME { SORT AREA FOR file-name-1 .. T an
SORT -MERGE SORT-MERGE AREA clauses are non-
ST functional. The SAME RECORD AREA
MULTIPLE FILE TAPE CONTAINS is functional, however.
. . 2. The MULTIPLE FILE TAPE clause is
e |l IS diEel) obsolete and is therefore recognized
. but not functional.

3. The SAME RECORD AREA clause allows you to specify that multiple files should share the same input and output
memory buffers. These buffers can sometimes get quite large, and by having multiple files share the same buffer
memory you may significantly cut down the amount of memory the program is using (thus making “room” for
more procedural code or data). If you do use this feature, take care to ensure that no more than one of the
specified files are ever OPEN simultaneously.

11FEB2012 Version 4-15

GNU COBOL 2.0 Programmers Guide

ENVIRONMENT DIVISION

11FEB2012 Version

4-16

GNU COBOL 2.0 Programmers Guide

DATA DIVISION

5. DATA DIVISION

Figure 5-1 - General DATA DIVISION Format

DATA DIVISION.

FILE SECTION.

file-or-sort/merge-file-description

constant-description
{ record-description } ’

WORKING-STORAGE SECTION.
constant-description
1 77-level-data-description | .
01-level-data-description

LOCAL-STORAGE SECTION.
constant-description
1 77-level-data-description | -
01-level-data-description

LINKAGE SECTION.
constant-description
{1 77-level-data-description | .
01-level-data-description

REPORT SECTION.

report-description

constant-description
{01-Ieve/-data-description }

SCREEN SECTION.
constant-description
screen-description b

The DATA DIVISION is used to define all data
that will be processed by a program. The
contents of the various sections are as follows:

FILE SECTION

Provides a detailed specification as to the
blocking characteristics and record layouts of
each SELECTed file.

WORKING-STORAGE SECTION

Definitions of the various internal data items
used by the program.

LOCAL-STORAGE SECTION

Similar to WORKING-STORAGE, but describes
data within a subprogram that will be
dynamically allocated and initialized
(automatically) each time the subprogram is
executed (WORKING-STORAGE is automatically
initialized only the 1% time a subprogram is
executed).

LINKAGE SECTION

Describes data within a subprogram that serves
as input arguments to or output arguments
from the subprogram.

REPORT SECTION

Describes the layout of printed reports as well
as many of the functional aspects of the
generation of reports.

SCREEN SECTION

Describes the visual layout of entire screens.

1. Any SECTIONs that are used must be specified in the order shown. If no DATA DIVISION sections are needed, the

DATA DIVISION header itself may be omitted.

2. The REPORT SECTION is syntactically recognized but will —if used — be rejected as unsupported. GNU COBOL
does not support the RWCS™ (it does support the LINAGE clause in an FD, however).

3. LOCAL-STORAGE cannot be used in nested subprograms.

See Also...

A Sample GNU COBOL Screen

=

3.3.9

Defining Screens 5.2.2

Defining Data Items 5.2

10 Report-Writer Control System

11FEB2012 Version

5-1

GNU COBOL 2.0 Programmers Guide

DATA DIVISION

5.1. File Or Sort/Merge File Descriptions

Every file that has been SELECTed in the FILE-CONTROL paragraph must be described in the FILE SECTION of the DATA
DIVISION. Files destined for use as sort/merge work files must be described with a Sort/Merge File Description (SD)
while every other file is described with a File Description (FD). Each of these descriptions will be followed with at least

one Record Description.

Figure 5-2 - File Description (FD) and Sort Description (SD) Syntax

There must be

EXTERNAL H

} file-name-1 1S H GLOBAL

——
6 [3

CONTAINS integer-1 [TO integer-2] CHARACTERS

RECORD IS VARYING IN SIZE
FROM integer-3 [TO integer-4] CHARACTERS
DEPENDING ON identifier-1

[CODE-SET IS alphabet-name-1]

integer-5

identifier—Z} LINES

LINAGE IS {

integer-6 }
identifier-3
integer-7 }
Identifier-4

WITH FOOTING AT{

LINES AT TOP{

integer-8 }

LINES AT BOTTOM
S OTT10 { Identifier-5

RECORDS

L {REQQ_RD Is } {QMITTED } }

.= | RECORDS ARE STANDARD
RECORD IS o

DATA {E ARE } identifier-6 ... }

. literal-1
| tor- -1 IS
VALUE OF implementor-name { identifier—7} }

[RECORDING MODE IS recording-mode-1]
REPORT IS
REPORTS ARE

} identifier-8 ..]

, : CHARACTERS
BLOCK CONTAINS integer-9 [IO integer-10]{ HARACTER H

a detailed
description
for every file
SELECTed in
your program.
These
detailed
descriptions
will be coded
in the FILE
SECTION.

1. Afile description for a file used as a sort/merge work file must be specified as an SD. The descriptions of all other

files must be specified as FDs.

2. The name specified as file-name-1 must exactly match the name specified on the file’s SELECT statement.

3. By specifying the EXTERNAL clause, the file description is capable of being shared between all programs executed
from the same execution thread, provided the file description is coded (with an EXTERNAL clause) in each
program requiring it. This sharing allows the file to be OPENed, read and/or written and CLOSEd in different
programs. This sharing applies to the record descriptions subordinate to the file description too.

4. By specifying the GLOBAL clause, the file description is capable of being shared between a program and any
nested subprograms within it, provided the file description is coded (with a GLOBAL clause) in each program

11FEB2012 Version

GNU COBOL 2.0 Programmers Guide DATA DIVISION

10.

11.

12.

requiring it. This sharing allows the file to be OPENed, read and/or written and CLOSEd in different programs.
Separately compiled programs cannot share a GLOBAL file description, but they can share an EXTERNAL file
description. This sharing applies to the record descriptions subordinate to the file description too.

The RECORD CONTAINS and RECORD IS VARYING clauses are ignored (with a warning message issued) when used
with LINE SEQUENTIAL files. With other file organizations these mutually-exclusive clauses define the length of
data records within the file. The data item specified as identifier-1 must be defined within one of the record
descriptions of file-name-1.

The CODE-SET, clause allows a custom alphabet (defined in the SPECIAL-NAMES paragraph of the
CONFIGURATION SECTION) to be associated with a file. This clause is valid only when used with RECORD BINARY
SEQUENTIAL or LINE SEQUENTIAL files.

The REPORT IS clause is syntactically recognized but will cause an error since the Report Writer Control System
(RWCS) is not currently supported by GNU COBOL.

The BLOCK CONTAINS clause is syntactically recognized by the GNU COBOL compiler, but is currently non-
functional.

The LABEL RECORD, DATA RECORD, RECORDING MODE and VALUE OF clauses are obsolete. If used, they will
have no impact on the generated code. The identifiers specified on the DATA RECORD clause will be verified as
being defined within the program, but the compiler won’t care whether they are actually specified as records of
the file or not.

The LINAGE clause can only be specified for ORGANIZATION RECORD BINARY SEQUENTIAL or ORGANIZATION
LINE SEQUENTIAL files. It cannot be used within an SD. If used on an ORGANIZATION RECORD BINARY
SEQUENTIAL file, the definition of that file will be implicitly changed to LINE SEQUENTIAL.

Figure 5-3- LINAGE-specified Page Structure

The LINAGE clause is used to specify
the logical boundaries (in terms of Top Margin (unprintable) LINESATTOP ¢
. . Default=0
numbers of lines) of various areas on
a printed page, as shown in Figure
5-3.
This page structure — once defined - LINAGEIS n LINES
can be automatically enforced by the
the WRITE statement.
Page Body (printable)
Default = no page footer
- WITH FOOTING AT f
Page Footing area (if any)
. . LINESAT BOTTOM b
Bottom Margin (unprintable) - }Default=0

The following special rules apply only to sort/merge work files (SDs):
a. Sort/merge work files should be assigned to DISK (or DISC).
b. SORTs and MERGEs will be performed in memory, if the amount of data being sorted allows.

¢. Should actual disk work files be necessary due to the amount of data being SORTed or MERGEd, they will be
automatically allocated to disk in a folder defined by the TMPDIR, TMP or TEMP environment variables.
These disk files will be automatically purged upon SORT / MERGE termination. They will also be purged if the
program terminates abnormally before the SORT or MERGE finishes. Should you ever need to know,
temporary sort/merge work files will be named “cob*.tmp”.

11FEB2012 Version 5-3

GNU COBOL 2.0 Programmers Guide DATA DIVISION

d. If you specify a specific filename in the sort/merge work file’s SELECT, it will be ignored.

See Also...
The SPECIAL-NAMES Paragraph 4.1.4 The OPEN Statement 6.4.29
Defining File Characteristics (SELECT) 4.2.1 The SORT Statement (File Sort) 6.4.40.1
Describing Record Layouts 5.1.1 The WRITE Statement 6.4.50
The CLOSE Statement 6.4.7 Execution-time Environment Variables 8.2.4
The MERGE Statement 6.4.25

5.1.1. Record Descriptions

Every file description must be followed by at least one record description. If there are multiple record descriptions
present, the one with the longest length will define the size of the record buffer into which READ statements deliver
data read from the file and from which WRITE statements take the data to be written to the file. The various record
descriptions for a file description implicitly share that one common record buffer (thus, they provide different ways to
view the structure of data that can exist within the file). Record buffers can be shared between files by using the
SAME RECORD AREA clause within the I-O-CONTROL paragraph of the ENVIRONMENT DIVISION.

Record descriptions for all files take the form of 01-level data items that are coded immediately following the file
description. These data items are constructed according to all the rules specified for defining non SCREEN SECTION
data items, except that the VALUE clause may not be used.

See Also...
I Sharing Record Buffers Between Files 4.2.2 I I Defining Records And Their Fields 5.2.1

5.2. Describing Data Items

GNU COBOL data items, like those of other COBOL implementations, are described in a hierarchical manner. This
accommodates the fact that data items frequently need to be able to be broken up into subordinate items. Take for
example, the following logical layout of a portion of a data item named “Employee”:

Employee
» additional data items ...

| »

Employee-Name | | Employment-Dates |

Last-Name First-Name MiddletInitial

I I I I I I
Year Month Day Year Month Day

The “Employee” data item consists of two subordinate data items —an “Employee-Name” and an “Employment-
Dates” data item (presumably there would be a lot of others too, but we don’t care about them right now). As the
diagram shows, each of those data items are —in turn — broken down into subordinate data items. This hierarchy of
data items can get rather “deep”, and GNU COBOL has no problem dealing with it.

In GNU COBOL, data items that are broken down into other data items are referred to as group items, while those
that aren’t broken down are called elementary items. A group item that doesn’t belong to any other data item (the
one at the top of a chart like this one) is called a record. In the chart above, the names of all the elementary items are
shown in red (without a box around it), the names of all the group items are shown in blue (with a box around it) and
the record data item’s box is shaded yellow.

GNU COBOL uses the concept of a “level number” to indicate the level at which a data item occurs in a data structure
such as the example shown above. Then these data items are defined, they are all defined together with a number in
the range 1-49 specified in front of their names. Over the years, a convention has come to exist among COBOL

11FEB2012 Version 5-4

GNU COBOL 2.0 Programmers Guide DATA DIVISION

programmers that level numbers are always coded as two-digit numbers — they don’t have to be specified as two-digit
numbers, but every example you see in this document will take that approach!

The record data item (the one at the top) always has a level number of 01. After that, you may assign level numbers
as you wish (01 -02-03-04-..,01-05-10—-15- ..., etc.) as you see fit, as long as you follow these simple rules:

1. Every data item at the same “level” of a hierarchy diagram such as the one you see here (if you were to make one
which you rarely — if ever — will once you get used to this concept) must have the same level number.

2. Every level uses a level number that is strictly greater than the one used in the prior (next higher) level.
3. You never use a level number greater than 49.

So, the definition of these data items in a GNU COBOL program would go something like this:

01 Employee
05 Employee-Name
10 Last-Name
10 First-Name
10 Middle-Initial
05 Employment-Dates
10 From-Date
15 Year
15 Month
15 Day
10 To-Date
15 Year
15 Month
15 Day

The indentation is purely at the discretion of the programmer to make things easier for humans to read (the compiler
couldn’t care less). Historically, COBOL implementations that required Fixed Format Mode source programs required
that the “01” level begin in Area A and that everything else begin in Area B. GNU COBOL only requires that all data
definition syntax occur in columns 8-72. In Free Format Mode, of course, there aren’t even those limitations.

The coding example shown above is incomplete — it only describes the data item names and their hierarchical
relationships to one other. In addition, any valid data item definitions will also need to describe what type of data is
to be contained in a data item (Numeric? Alphanumeric? Alphabetic?), how much data can “fit” and a multitude of
other characteristics.

See Also...

Fixed-Format Source Code 1.5.1.1 ‘ ‘ Defining Data Items 5.2

11FEB2012 Version 5-5

GNU COBOL 2.0 Programmers Guide DATA DIVISION

5.2.1. Defining non-SCREEN SECTION Data Items

Figure 5-4 — Non-SCREEN SECTION Data Item Description Syntax

level-number H Identifier-1 H':IS { EXTERNAL }}

FILLER GLOBAL
ANY LENGTH]

BASED]

BLANK WHEN ZERO |

JUSTIFIED RIGHT]

DESCENDING KEY IS identifier-3
[INDEXED BY identifier-4 |

PICTURE picture-string]
REDEFINES identifier-2]
RENAMES identifier-3 [THRU|THROUGH identifier-4]

LEADING
TRAILING

snomonzes [,]]

[USAGE IS data-item-usage |
[VALUE IS [ALL] literal-1]

[
[
[
[
{ OCCURS integer-1 [IO integer-2] TIMES [DEPENDING ON jdentifier-2]
[
[
[
|

SIGN IS { } [SEPARATE CHARACTER]:|

The syntax skeleton shown here describes the manner in which data items are defined in all DATA DIVISION sections
except the SCREEN SECTION.

1.

11FEB2012 Version

The only valid level numbers are 01-49, 66, 77, 78 and 88. Level numbers 01 through 49 are used to define data
items that may be part of a hierarchical structure of data items. Level number 01 can also be used to define a
constant —an item with an unchangable value specified at compilation time. Level numbers 66, 77, 78 and 88 all
have special uses, and are covered in upcoming sections (the “See Also” table at the end of this section provides
links to those discussions).

Not specifying an identifier-name-1 or FILLER immediately after the level number has the same effect as if FILLER
were specified. A data item named FILLER cannot be referenced directly; these items are generally used to
specify an unused portion of the total storage allocated to a group item.

By specifying the EXTERNAL clause, the data item is capable of being shared between all programs executed from
the same execution thread, provided the data item is coded (with an EXTERNAL clause) in each program requiring
it.

By specifying the GLOBAL clause, the data item is capable of being shared between a program and any nested
subprograms within it, provided the data item is coded (with a GLOBAL clause) in each program requiring it.

The EXTERNAL clause may only be specified at the 77 or 01 level.

An EXTERNAL item must have a data name (i.e. identifier-1) and that name cannot be FILLER.

GNU COBOL 2.0 Programmers Guide

DATA DIVISION

7. EXTERNAL cannot be combined with GLOBAL, REDEFINES or BASED.

8. Every data item description must be terminated with a period.

See Also...
Describing Record Layouts 5.1.1 Defining Level-77 Data Items 5.2.5
Defining Screens 5.2.2 Defining Level 78 Constants 5.2.6
Defining Level-01 Constants 5.2.3 Defining Level-88 Condition Names 5.2.7
Defining Level-66 RENAMES Data Items 5.2.4

5.2.1.1. ANY LENGTH Clause

1. Dataitems declared with the ANY LENGTH attribute have no fixed compile-time length.

Such items may only be defined in the LINKAGE SECTION of a subprogram as they may only ANY LENGTH

serve as subroutine argument descriptions. ANY LENGTH items must have a PICTURE
clause that specifies exactly one A, X or 9 symbol.

2. The ANY LENGTH and BASED clauses cannot be used together in the same data item description.

5.2.1.2. BASED Clause

1. Dataitems declared with BASED are allocated no storage at compilation time. At run-time, the

ALLOCATE or SET ADDRESS verbs are used to allocate space for and (optionally) initialize such BASED
items.
2. The BASED and ANY LENGTH clauses cannot be used together in the same data item description.
3. The BASED clause may only be used on level 01 and level 77 data items.
See Also...
| The ALLOCATE Statement 6.4.3 | | The SET ADDRESS Statement 6.4.39.3

5.2.1.3. BLANK WHEN ZERO Clause

1. The BLANK WHEN ZERO clause can only be used with a PIC 9 USAGE DISPLAY data
item; it will cause that item’s value to be automatically transformed into SPACES if a

value of 0 is ever MOVEd to the item.

BLANK WHEN ZERO

5.2.1.4. JUSTIFIED Clause

1. The JUSTIFIED RIGHT clause, valid only on an alphabetic (PIC A) or alphanumeric
(PIC X) data item, will cause values shorter than the length of the data item to be

JUSTIFIED RIGHT

right-justified and space-filled when they are MOVEd into the data item (the
default behavior is to left-justify and space fill).

2. The word JUSTIFIED may be abbreviated as JUST.

11FEB2012 Version

5-7

GNU COBOL 2.0 Programmers Guide DATA DIVISION

5.2.1.5. OCCURS Clause

1. The OCCURS
clause is used OCCURS integer-1 [TO integer-2] TIMES [DEPENDING ON identifier-2]
to create a ASCENDING
data H DESCENDING } KEY IS /dent/f/er-3}
structure [INDEXED BY identifier-4 |
called a

table™ that
repeats multiple times. For example:

05 QUARTLY-REVENUE OCCURS 4 TIMES PIC 9(7)V99.

Will allocate the following:

| QUARTLY-REVENUE (1) | QUARTLY-REVENUE (2) | QUARTLY-REVENUE (3) | QUARTLY-REVENUE (4) |

Each occurrence is referenced using the subscript syntax (a numeric literal, arithmetic expression or numeric
identifier enclosed within parenthesis) shown in the diagram. The OCCURS clause may be used at the group level
too, in which case the entire group structure repeats, as follows:

05 X OCCURS 3 TIMES.

10 A PIC X(1).
10 B PIC X(1).
10 C PIC X(1).
X (1) X(2) X (3)

A1) | B(1) [c@) | A@ [B@2 | c@2 [AB) [BB [c@)

2. The optional DEPENDING ON clause can be added to an OCCURS to create a variable-length table. Such tables
will be allocated out to the maximum size specified as integer-2. At execution time the value of identifier-2 will
determine how many of the table elements are accessible.

3. See the documentation of the SEARCH, SEARCH ALL and SORT verbs for explanations of the KEY and INDEXED BY
clauses.

4. The OCCURS clause cannot be specified in a data description entry that has a level number of 01, 66, 77, or 88.

5.2.1.6. PICTURE Clause

1. The word PICTURE may be abbreviated as PIC. . .
PICTURE picture-string

2. The PICTURE clause defines the class (numeric, alphabetic or alphanumeric) of

the data that may be contained by the data item being defined. A PICTURE also
(sometimes in conjunction with USAGE) defines the amount of storage reserved for the data item. The three
basic class-specification PICTURE symbols have the following uses:

Figure 5-5 - Data Class-Specification PICTURE Symbols (A/X/9)

Basic Meaning and Usage
Symbol

9 Defines a spot reserved for a single decimal digit. The actual amount of storage occupied will
depend on the specified USAGE.

A Defines a place reserved for a single alphabetic character (“A”-“Z”, “a”-“z"”). Each “A” represents a
single byte of storage.

X Defines a place reserved for a single character of storage. Each “X” represents a single byte of
storage.

These three symbols are used repeatedly in a PICTURE clause to define how many of each class of data may be
contained within the field. For example:

PIC 9999 Allocates a data item that can store four-digit positive numbers (we’ll see shortly how negative

' Other programming languages with which you might be familiar refer to this sort of structure as an array.

11FEB2012 Version 5-8

GNU COBOL 2.0 Programmers Guide DATA DIVISION

values can be accounted for). If the USAGE of the field is DISPLAY (the default), four bytes of
storage will be allocated and each byte may contain the character “0”, “1”, “2”, ..., “8” or “9”.
There is no run-time enforcement of the fact that only digits are allowed. A compilation-time
WARNING will be issued if literal value that violates the digits-only rule is MOVEd to the field. A
run-time violation is detectable using a class condition test.

PIC 9(4) Identical to the above — a repeat count enclosed within parenthesis can be used with any PICTURE
symbols that allows repetition.

PIC X(10) This data item can hold a string of any ten characters.

PIC A(10) This data item can hold a string of any ten letters. There is no enforcement of the fact that only
letters are allowed, but a violation is detectable via a class condition test.

PIC AA9(3)A This is exactly the same as specifying X(6), but it documents the fact that values should be two
letters followed by 3 digits followed by a single letter. There is no enforcement and no capability
of detecting violations other than a “brute force” check by character position.

Data items containing “A” or “X” PICTURE symbols cannot be used in arithmetic calculations.

In addition to the above Figure 5-6 shows the numeric option PICTURE symbols that may be used with “PIC 9”
Data Items

Figure 5-6 - Numeric Option PICTURE Symbols (P/S/V)
Numeric Meaning and Usage
Option

Symbol

P Defines an implied digit position that will be considered to be a 0 when the data item is referenced
at run-time. This symbol is used to allow data items that will contain very large values to be
allocated using less storage by assuming a certain number of trailing zeros (one per “P”) to exist at
the end of values.

All computations and other operations performed against such a data item will behave as if the
zeros were actually there.

When values are stored into such a field they will have the digit positions defined by the “P”
symbols stripped from the values as they are stored.

For example, let’s say you need to allocate a data item that contains however many millions of
dollars of revenue your company has in gross revenues this year:

01 Gross-Revenue PIC 9(9).

In which case 9 bytes of storage will be reserved. The values 000000000 thru 999999999 will
represent the gross-revenues. But, if only the millions are tracked (meaning the last six digits are
always going to be 0), you could define the field as:

01 Gross-revenue PIC 9(3)P(6).

Whenever Gross-Revenue is referenced in the program, the actual value in storage will be treated
as if each P symbol (6 of them, in this case) were a zero.

If you wanted to store the value 128 million into that field, you would do so as if the “P”s were
“9”s:

MOVE 128000000 TO Gross-Revenue.

S This symbol, which if used must be the very first symbol in the PICTURE value, indicates that
negative values are possible for this data item. Without an “S”, any negative values stored into this
data item via a MOVE or arithmetic statement will have the negative sign stripped from it (in effect
becoming the absolute value).

\" This symbol is used to define where an implied decimal-point (if any) is located in a numeric item.
Just as there may only be a single decimal point in a number so may there be no more than one
“V” in a PICTURE. Implied decimal points occupy no space in storage — they just specify how values
are used. For example, if the value “1234” is in storage in a field defined as PIC 999V9, that value
would be treated as 123.4 in any statements that referenced it.

11FEB2012 Version 5-9

GNU COBOL 2.0 Programmers Guide

DATA DIVISION

3. GNU COBOL supports all standard COBOL PICTURE editing symbols, namely “$”, comma, asterisk (*), decimal-
point, CR, DB, + (plus), - (minus), “B”, “0” (zero) and “/”, as follows:

Editing
Symbol
- (minus)

Figure 5-7 - Numeric Editing PICTURE Symbols

Meaning and Usage

This symbol must be used either at the very beginning of a PICTURE or at the very end. If “-“is used, none
of “+”, “CR” or “DB” may be used. It is used to edit numeric values.

“ u

Multiple consecutive “-“ symbols are allowed only at the very beginning of the field. This is called a

floating minus sign.

Each “-“ symbol will count as one character position in the size of the data item.

“« u “

If only a single “-“ symbol is specified, that symbol will be “replaced” by a if the value moved to the

field is negative, or a SPACE otherwise.
If a floating minus sign is used, think of the editing process as if it worked like this:

1. Determine what the edited value would be if each “-“ were actually a “9”.

2. Locate the digit in the edited result that corresponds to the right-most “-“ and scan the edited value
back to the left from that point until you come to a “0” that has nothing but “0” characters to the left of
it.

3. Replace that “0” with a “-“ if the value moved to the field is negative or a SPACE otherwise.

4. Replace all remaining “0” characters to the left of that position by SPACES.

Some examples (the symbol b denotes a space):

...is moved to a field with ... this value in storage will
this PICTURE... result:

If this value...

17

b017

-17

-017

265

bbbb265

-265

bbb-265

51

051b

999-

051-

-51

$12

This symbol must be only be used at the very beginning of a PICTURE except that a “+” or “-“ may appear
to the left of it. It is used to edit numeric values.

Multiple consecutive “$“ symbols are allowed. This is called a floating currency symbol.
Each “S“ symbol will count as one character position in the size of the data item.

If only a single “$“ symbol is specified, that symbol will be inserted into the edited value at that position
unless there are so many significant digits to the field value that the position occupied by the “S” is needed
to represent a leading non-zero digit. In such cases, the “S” will be treated as a “9”.

If a floating currency sign is used, think of the editing process as if it worked like this:

1. Determine what the edited value would be if each “$“ were actually a “9”.

2. Locate the digit in the edited result that corresponds to the right-most “$“ and scan the edited value
back to the left from that point until you come to a “0” that has nothing but “0” characters to the left of
it.

3. Replace that “0” with a “$"“.

4. Replace all remaining “0” characters to the left of that position by SPACES.

Some examples (the symbol b denotes a space):

If this value... ...is moved to a field with ... this value in storage will
this PICTURE... result:
17 $999 $017
265 5555599 bbb$265

12

The default currency sign used is “$”. Other countries use different currency signs. The SPECIAL-NAMES paragraph allows any

symbol to be defined as a currency symbol. If the currency sign is defined to the character ‘#’, for example, then you would

use the ‘#' character as a PICTURE editing symbol.

11FEB2012 Version

5-10

GNU COBOL 2.0 Programmers Guide DATA DIVISION

Editing
Symbol
* (asterisk)

Meaning and Usage
This symbol must be only be used at the very beginning of a PICTURE except that a “+” or “-“ may appear
to the left of it. It is used to edit numeric values.

uxu

Multiple consecutive symbols are not only allowed, but are the typical usage. This is called a floating

check protection symbol.
Each “*“ symbol will count as one character position in the size of the data item.

Think of the editing process as if it worked like this:

“uxu

1. Determine what the edited value would be if each

2. Locate the digit in the edited result that corresponds to the right-most and scan the edited value
back to the left from that point until you come to a “0” that has nothing but “0” characters to the left of
it.

3. Replace that “0” with a “**“.

4. Replace all remaining “0” characters to the left of that position by

were actually a “9”.

“uxu

uxn

also.

An example:

If this value... ...is moved to a field with ... this value in storage will
this PICTURE... result:

“n

Each comma (,) in the PICTURE string represents a character position into which the character “,” will be

(comma)B inserted. This character position is counted in the size of the item. The “,” symbol is a “smart symbol”
capable of masquerading as the floating symbol to its left and right should there be insufficient digits of
precision to the numeric value being edited to require the insertion of a “,” character.

For example (the symbol b denotes a space):
If this value... ...is moved to a field with ... this value in storage will
this PICTURE... result:
17 $5,555,599 bbbbbbb$17
265 $5,555,599 bbbbbb$265
1456 $5,555,599 bbbb$1,456

. (period)13 This symbol inserts a decimal point into the edited value at the point where an implied decimal point exists
in the value. Itis used to edit numeric values. Note that the period specified at the end of every data
item definition IS NOT treated as an editing symbol!

An example:
01 Edited-Value PIC 9(3).99.
01 Payment PIC 9(3)V99 VALUE 152.19.
MOVE Payment TO Edited-Value.
DISPLAY Edited-Value.
Will display 152.19
/ (slash) This symbol — usually used when editing dates for printing — inserts a “/” character into the edited value.

The inserted “/” character will occupy a byte of storage in the edited result.
An example:

01 Edited-Date PIC 99/99/9999.

MOVE 08182009 TO Edited-Date.
DISPLAY Edited-Date.

The displayed value will be 08/18/2009.

13

If DECIMAL-POINT IS COMMA is specified in the SPECIAL-NAMES paragraph, the meanings and usages of the “.” and “,”

characters will be reversed

11FEB2012 Version 5-11

GNU COBOL 2.0 Programmers Guide

DATA DIVISION

Editing Meaning and Usage

Symbol

+ (plus) This symbol must be used either at the very beginning of a PICTURE or at the very end. If “+“is used, none
of “-”, “CR” or “DB” may be used. It is used to edit numeric values.

Multiple consecutive “+“ symbols are allowed only at the very beginning of the field. This is called a

floating plus sign.

Each “+“ symbol will count as one character position in the size of the data item. If only a single “+“

symbol is specified, that symbol will be replaced by a “-“ if the value moved to the field is negative, or a “+”

otherwise.

If a floating plus sign is used, think of the editing process as if it worked like this:

1. Determine what the edited value would be if each “+“ were actually a “9”.

2. Locate the digit in the edited result that corresponds to the right-most “+“ and scan the edited value
back to the left from that point until you come to a “0” that has nothing but “0” characters to the left
of it.

3. Replace that “0” with a “-“ if the value moved to the field is negative or a “+” otherwise.

4. Replace all remaining “0” characters to the left of that position by SPACES.

Some examples (the symbol b denotes a space):

If this value... ...is moved to a field with ... this value in storage will
this PICTURE... result:
17 +999 +017
-17 +999 -017
265 +++++99 bbb+265
-265 +++++99 bbb-265
51 999+ 051+
-51 999- 051-
0 (zero) This symbol inserts a “0” character into the edited value. The inserted “0” character will occupy a byte of
storage in the edited result.

An example:

01 Edited-Phone-Number PIC 9(3)B9(3)B9(4).

MOVE 5185551212 TO Edited-Phone-Number.
DISPLAY Edited-Phone-Number.

The displayed value will be 518 555 1212.

B This symbol inserts a SPACE character into the edited value. The inserted SPACE character will occupy a
byte of storage in the edited result.

An example:

01 Edited-Phone-Number PIC 9(3)B9(3)B9(4).

MOVE 5185551212 TO Edited-Phone-Number.
DISPLAY Edited-Phone-Number.

The displayed value will be 518 555 1212.

CR This symbol must be used only at the very end of a PICTURE. If “CR“ is used, none of “-”, “+” or “DB” may
be used. Itis used to edit numeric values.

Multiple “CR“ symbols are not allowed in one PICTURE clause.

A “CR" symbol will count as two character positions in the size of the data item.

If the value moved into the field is negative, the characters “CR” will be inserted into the edited value,

otherwise two SPACES will be inserted.

Some examples (the symbol b denotes a space):

This value... ...is moved to a field with ...resulting in this value in
this PICTURE... storage:
17 99CR 17bb
-17 99CR 17CR

11FEB2012 Version

5-12

GNU COBOL 2.0 Programmers Guide

DATA DIVISION

Editing Meaning and Usage
Symbol
DB This symbol must be used only at the very end of a PICTURE. If “DB“ is used, none of “-”, “+” or “CR” may
be used. Itis used to edit numeric values.
Multiple “DB“ symbols are not allowed in one PICTURE clause.
A “DB“ symbol will count as two character positions in the size of the data item.
If the value moved into the field is negative, the characters “DB” will be inserted into the edited value,
otherwise two SPACES will be inserted.
Some examples (the symbol b denotes a space):
This value... ...is moved to a field with ...resulting in this value in
this PICTURE... storage:
17 99DB 17bb
-17 99DB 17DB
Z This symbol must be only be used at the very beginning of a PICTURE except that a “+” or “-“ may appear

to the left of it. It is used to edit numeric values.

Multiple consecutive “Z“ symbols are not only allowed, but are the typical manner in which this editing

symbol is used. This is called a floating zero suppression.

Each “Z" symbol will count as one character position in the size of the data item.

Think of the editing process as if it worked like this:

1. Determine what the edited value would be if each “Z“ were actually a “9”.

2. Locate the digit in the edited result that corresponds to the right-most “Z“ and scan the edited value
back to the left from that point until you come to a “0” that has nothing but “0” characters to the left

of it.

3. Replace that “0” with a SPACE.
4. Replace all remaining “0” characters to the left of that position by SPACES.

Some examples (the symbol b denotes a space):

This value... ...is moved to a field with ...resulting in this value in
this PICTURE... storage:
17 7999 b017
265 7777799 bbbb265

No more than one editing symbol may be used in a floating manner in the same PICTURE clause.

Numeric data items containing editing symbols are referred to as numeric edited fields. Such data items may

receive values in the various arithmetic statements but may not be used as sources of data in those same
statements. The statements in question are ADD, COMPUTE, DIVIDE, MULTIPLY and SUBTRACT.

See Also...
The SPECIAL-NAMES Paragraph 4.1.4 The COMPUTE Statement 6.4.9
Storage Format of Data (USAGE) 5.2.1.11 The DIVIDE Statement 6.4.13
Class Tests 6.1.4.2.2 The MULTIPLY Statement 6.4.27
The ADD Statement 6.4.2 The SUBTRACT Statement 6.4.44

5.2.1.7. REDEFINES Clause

1. The REDEFINES clause causes identifier-1 (the data item in which the
REDEFINES clause is specified) to occupy the same physical storage space as
identifier-2, so that storage may be defined in a different manner with a

REDEFINES identifier-2

(probably) different structure. The following must all be true in order to use REDEFINES:

a. The level number of identifier-2 must be the same as that of identifier-1.

b. The level number of identifier-2 (and identifier-1) cannot be 66, 78 or 88.

11FEB2012 Version

5-13

GNU COBOL 2.0 Programmers Guide DATA DIVISION

c. If “n” represents the level number of identifier-2 (and identifier-1), then no other data items with level
number “n” may be defined between identifier-1 and identifier-2.

d. The total allocated size of identifier-1 must be the same as the total allocated size of identifier-2.

e. No OCCURS clause may be defined on identifier-2. There may — however — be items defined with OCCURS
clauses subordinate to identifier-2.

f. No VALUE clause may be defined on identifier-2. No data items subordinate to identifier-2 may have VALUE
clauses, with the exception of level-88 condition names.

5.2.1.8. RENAMES Clause

The RENAMES clause regroups previously
defined items by specifying alternative, possibly RENAMES identifier-3 [THRU|THROUGH identifier-4]
overlapping, groupings of elementary data items
in a record.

See Also...

‘ Defining Level-66 RENAMES Data Items 5.2.4

5.2.1.9. SIGN Clause

1. The SIGN clause, allowable only for USAGE
DISPLAY numeric data items, specifies how an “S”
symbol will be interpreted in a data item’s
PICTURE clause. Without the SEPARATE

LEADING
SIGN IS TRAILING [SEPARATE CHARACTER]

CHARACTER option, the sign of the data item’s
value will be encoded by transforming the last (TRAILING) or first (LEADING) digit as follows:

Figure 5-8 - Sign-Encoding Characters
First/Last | Encoded Value | Encoded Value

Digit For POSITIVE For NEGATIVE

0 P
1 1 q
2 2 r
3 3 s
4 4 t
5 5 u
6 6 v
7 7 w
8 8 X
9 9 y

If the SEPARATE CHARACTER clause is used, then an actual “+” or “-“ sign will be inserted into the field’s value as
the first (LEADING) or last (TRAILING) character.

2. When SEPARATE CHARACTER is specified, the “S” symbol in the data item’s PICTURE must be counted when
determining the data item’s size.

See Also...

Defining a Data Item’s PICTURE 5.2.1.6

11FEB2012 Version 5-14

GNU COBOL 2.0 Programmers Guide DATA DIVISION

5.2.1.10. SYNCHRONIZED Clause

1. The SYNCHRONIZED clause (which may be abbreviated as SYNC)
optimizes the storage of binary numeric items to store them in such
a manner as to make it as fast as possible for the CPU to fetch them.
This synchronization is performed as follows:

—
n
—

SYNCHRONIZED [‘[]‘]

£
@)
T
=]

a. Ifthe binary item occupies one byte of storage, no synchronization is performed.

b. If the binary item occupies two bytes of storage, the binary item is allocated at the next half-word boundary.
c. Ifthe binary item occupies four bytes of storage, the binary item is allocated at the next word boundary.

d. If the binary item occupies four bytes of storage, the binary item is allocated at the next word boundary.

Figure 5-9 provides an example of a group item’s storage allocation with and without using SYNCHRONIZED.

Figure 5-9 - Effect of the SYNCHRONIZED Clause

01 Group-Item-1. 01 Group-Item-2.
05 A PIC X(1). 05 A PIC X(1).
05 B USAGE BINARY-SHORT. 05 B SYNC USAGE BINARY-SHORT.
05 C PIC X(2). 05 C PIC X(2).
e5 D USAGE BINARY-LONG. 05 D SYNC USAGE BINARY-LONG.
05 E PIC X(3). 05 E PIC X(3).
05 F USAGE BINARY-DOUBLE. 05 F SYNC USAGE BINARY-DOUBLE.
% % % % % %
Word Word Word Word Word Word Word Word Word Word Word Word Word
Groupitem1 |[A] B [¢ | D | E F
Group-ltem-2 | A B Cc D E F
Bytes Bytes Bytes
Double Double Double Double
Word Word Word Word

The grey blocks represent the unused “slack” bytes that are allocated in the Group-Item-2 structure because of
the SYNC clauses.

The LEFT and RIGHT options to the SYNCHRONIZED clause are recognized for syntactical compatibility with other
COBOL implementations, but are otherwise non-functional.

5.2.1.11. USAGE Clause

1. The following table summarizes the various possible USAGE
specifications: USAGE IS data-item-usage

Figure 5-10 - Summary of USAGE Specifications

Allows

Range of Possible Values A RECEINTS Laaiu

(See note #2,#4) Values? PICTURE?
(See note #3)

Defined by the quantity of “9”s in the PICTURE and the Compatible Binary If PICTURE

BINARY presence or absence of an “S” in the PICTURE Integer contains “S”

Yes

11FEB2012 Version 5-15

GNU COBOL 2.0 Programmers Guide DATA DIVISION

Allows
Range of Possible Values (SeeFr?:tr: :;, #a) ';Ilzglla::i:?e ;:Z:_S;;/ ?
(See note #3)
BINARY-C-LONG [SIGNED] Same as BINARY-DOUBLE SIGNED
BINARY-C-LONG UNSIGNED Typically 0 to 4,294,967,295 Native Binary Integer | No —see #3 No
BINARY-CHAR [SIGNED] -128 to 127 Native Binary Integer Yes No
BINARY-CHAR UNSIGNED 0to 255 Native Binary Integer | No —see #3 No
BINARY-DOUBLE [SIGNED] -9;22;é?;?’;gg’:g;g;?’;gg;0 Native Binary Integer Yes No
BINARY-DOUBLE UNSIGNED 0 to 18,446,744,073,709,551,615 Native Binary Integer | No — see #3 No
BINARY-INT Same as BINARY-LONG SIGNED
BINARY-LONG [SIGNED] -2,147,483,648 — 2,147,483,647 Native Binary Integer Yes No
BINARY-LONG UNSIGNED 0to 4,294,967,295 Native Binary Integer | No —see #3 No
BINARY-LONG-LONG Same as BINARY-DOUBLE SIGNED
BINARY-SHORT [SIGNED] -32,768 to 32,767 Native Binary Integer Yes No
BINARY-SHORT UNSIGNED 0 to 65,535 Native Binary Integer | No —see #3 No
COMPUTATIONAL Same as BINARY
COMPUTATIONAL:1 Same as FLOAT-SHORT
COMPUTATIONAL:2 Same as FLOAT-LONG
COMPUTATIONAL:3 Same as PACKED-DECIMAL
COMPUTATIONAL-4 Same as BINARY
II_)epends.on number of .”9"5 ir_1 PICTURE and the "b.inary— 4 4 If PICTURE
COMPUTATIONAL-5 size” setting of the configuration file used to compile the | Native Binary Integer contains “S” Yes
program

Defined by the quantity of “9”s in the PICTURE and the i

COMPUTATIONAL:6 presence\t/)r ab:Ience o\f/ an “S” in the PICTURE (see #1) Unslljggcei(rjn:ﬁgked No ves
If used with “PIC X”, allocates one byte of storage per “X”;

range of values is 0 to max storable in that many bytes Native unsigned (X) If PICTUR'.E 9

COMPUTATIONALX If used with “PIC 9”, range of values depends on number | or signed (9) Binary and c“c;rltalns Yes
of “9”s in PICTURE
Depends on PICTURE — One character® per X, A, 9, period,
sy LSS IISTARE CURACTER e o | s | 1T |
used

14

15

No half-byte is reserved for a sign as is the case with PACKED-DECIMAL

(unlikely), in which case 1 character = two bytes.

16

In this context, one character is the same as one byte, unless you’ve built yourself a GNU COBOL system that uses Unicode

This is the most reliable format, combined with a ORGANIZATION IS RECORD BINARY SEQUENTIAL file format to use for data

that is being shared between different computer systems because values encoded in this format may be represented exactly,
without the possibility of having special control-characters (which could disrupt FTP transmissions or confuse run-time library
software) as part of the data.

11FEB2012 Version

5-16

GNU COBOL 2.0 Programmers Guide DATA DIVISION

Allows
Format Negative Used w/

Range of Possible Values (See note #2,#4) Values? PICTURE?

(See note #3)

Native IEEE 754
FLOAT-DECIMAL-16" -9.999999999999999x10°** t0 9.999999999999999x10**" | Decimal64"’ Floating- Yes No
point
Native IEEE 754
17 -9.999999999999999999999999999999999x10°™** to : 7
FLOAT-DECIMAL-34 9.999999999999999999999999999999999x10°*+* Decimal128 ves No
Floating-point
Approximately Native IEEE 754
FLOAT-LONG"® -1.797693134862316x10°* to Binary64™® Floating- Yes No
1.797693134862316x10°% point
Approximately .
FLOAT-SHORT*® -3.4028235x10% to NatB'i‘r’] ° :EE;ZS“ Yes No
3.4028235x10* Y
INDEX 0 to maximum address possible (32 or 64 bits) Native Binary Integer No No
NATIONAL USAGE NATIONAL, while syntactically recognized, is not supported by GNU COBOL
Defined by the quantity of “9”s in the PICTURE and the Signed Packed If PICTURE
PACKED-DECIMAL . ven N
- presence or absence of an “S” in the PICTURE (see #1) Decimal contains “S ©
POINTER 0 to maximum address possible (32 or 64 bits) Native Binary Integer No No
PROGRAM-POINTER 0 to maximum address possible (32 or 64 bits) Native Binary Integer No No
SIGNED-INT Same as BINARY-LONG SIGNED
SIGNED-LONG Same as BINARY-DOUBLE SIGNED
SIGNED-SHORT Same as BINARY-SHORT SIGNED
UNSIGNED-INT Same as BINARY-LONG UNSIGNED
UNSIGNED-LONG Same as BINARY-DOUBLE UNSIGNED
UNSIGNED-SHORT Same as BINARY-SHORT UNSIGNED

2. Binary data (integer or floating-point) can be stored in either a “Big-Endian” or “Little-Endian” form.

Big-endian data allocation calls for the bytes that comprise a binary item to be allocated such that the least-
significant byte is the right-most byte. For example, a four-byte binary item having a value of decimal 20 would
be big-endian allocated as 00000014 (shown in hexadecimal notation).

Little-endian data allocation calls for the bytes that comprise a binary item to be allocated such that the least-
significant byte is the left-most byte. For example, a four-byte binary item having a value of decimal 20 would be
little-endian allocated as 14000000 (shown in hexadecimal notation).

All CPUs are capable of “understanding” big-endian format, which makes it the “most-compatible” form of binary
storage across computer systems.

' The USAGE specifications FLOAT-DECIMAL-16 and FLOAT-DECIMAL-34 will encode data using IEEE 754 “Decimal64” and

“Decimal128” format, respectively. The former allows for up to 16 digits of exact precision while the latter offers 34. The
phrase “exact precision” is used because the traditional binary renderings of decimal real numbers in a floating-point format
(FLOAT-LONG and FLOAT-SHORT, for example) only yield an approximation of the actual value because many decimal
fractions cannot be precisely rendered in binary. The Decimal64 and Decimal128 renderings, however, render decimal real
numbers in encoded decimal form in much the same way that PACKED-DECIMAL renders a decimal integer in digit-by-digit
decimal form. The exact manner in which this rendering is performed is complex (Wikipedia has an excellent article on the
subject — just search for “Decimal64”), and in fact the IEEE 754 standard allows Decimal64 and Decimal128 encodings to be
performed in two ways. GNU COBOL stores FLOAT-DECIMAL-16 and FLOAT-DECIMAL-34 data items using Native byte
ordering techniques (see #2).

¥ The USAGE specifications FLOAT-LONG and FLOAT-SHORT use the IEEE 754 “Binary64” and “Binary32: formats, respectively.

These are binary encodings of real decimal numbers, and as such cannot represent every possible value between the minimum
and maximum values in the range for those USAGEs. Wikipedia has an excellent artuicle on the Binary64 and Binary32
encoding schemes — just search on “Binary32” or “Binary64”. GNU COBOL stores FLOAT-LONG and FLOAT-SHORT data items
using Native byte ordering techniques (see #2).

11FEB2012 Version 5-17

GNU COBOL 2.0 Programmers Guide DATA DIVISION

Some CPUs — such as the Intel/AMD i386/x64 architecture processors such as those used in most Windows PCs —
prefer to process binary data stored in a little-endian format. Since that format is more efficient on those
systems, it is referred to as the “native” binary format.

On a system supporting only one format of binary storage (generally, that would be big-endian), the terms “most-
efficient” format and “native format” are synonymous.

Data items that have the UNSIGNED attribute explicitly coded, or DISPLAY/PACKED-DECIMAL/COMP-5/COMP-X
items that do not have an “S” symbol in their PICTURE clause cannot preserve negative values that may be stored
into them. Storing a negative value into such a field will actually result in the sign being stripped, essentially
saving the absolute value in the data item.

Packed-decimal (i.e. USAGE PACKED-DECIMAL, COMP-3 or COMP-6) data is stored as a series of bytes such that
each byte contains two 4-bit fields, referred to as “nibbles” (since they comprise half a “byte”) with each nibble
representing a “9” in the PICTURE and each holding a single decimal digit encoded as its binary value (0 = 0000, 1
=0001, ..., 9=1001). The last byte of a PACKED-DECIMAL or COMP-3 data item will always have its left nibble
corresponding to the last “9” in the PICTURE and its right nibble reserved as a sign indicator. This sifgn indicator is
always present regardless of whether or not the PICTURE included an “S” symbol. The first byte of the data item
will contain an unused left nibble if the PICTURE had an even number of “9” symbols in it. The sign indicator will
have a value of a hexadecimal A thru F. Traditional packed decimal encoding rules call for hecadecimal values of
C, A, Fand E in the sign nibble to indicate a positive value and B or D to represent a negative value (hexadecimal
digits 0-9 are undefined). Testing with a Windows MinGW/GNU COBOL implementation shows that — in fact — hex
digit D represents a negative number and any other hexadecimal digit denoting a positive number. Therefore, a
PIC S9(3) COMP-3 packed-decimal field with a value of -15 would be stored internally as a hexadecimal 015D in
GNU COBOL. If you attempt to store a negative number into a packed decimal field that has no “S” in its PICTURE,
the absolute value of the negative number will actually be stored. A USAGE of COMP-6 does not allow for
negative values, therefore no sign nibble will be allocated. A USAGE COMP-6 data item containing an odd
number of “9” symbols in its PICTURE will leave its leftmost nibble unused.

A USAGE clause specified at the group item level will apply that USAGE to all subordinate data items, except those
that themselves have a USAGE clause.

See Also...

GNU COBOL “config” Files 8.1.6

5.2.1.12. VALUE Clause

1.

The VALUE clause is ignored on EXTERNAL data items or on any data
items defines as subordinate to an EXTERNAL data item. VALUE IS [ALL] literal-1

The VALUE clause may not be used anywhere in the description of an
01 item serving as an FD or SD record description.

VALUE specifies an initial compilation-time value that will be assigned to the storage occupied by the data item in
the program object code generated by the compiler. If the optional “ALL” clause is used, it may only be used with
an alphanumeric literal value; the value will be repeated as needed to completely fill the data item. Here are
some examples with and without ALL:

PIC X(5) VALUE “A” *5> will have the value “A”,SPACE,SPACE,SPACE,SPACE
PIC X(5) VALUE ALL “A” *> will have the value “A”,”A”,”A”,”A”,”A”

PIC 9(3) VALUE 1 *> will have the value 001

PIC 9(3) VALUE ALL “1” *> will have the value 111

Giving a table an initial, compile-time value is one of the trickier aspects of COBOL data definition. There are
basically three standard techniques and a fourth that people familiar with other COBOL implementations but new
to GNU COBOL may find interesting. So, here are the three “standard” approaches:

a. Don’t bother worrying about it at compile-time. Use the INITIALIZE statement to initialize all data item
occurrences in a table (at run-time) to their data-type-specific default values (numerics: 0, alphabetic and
alphanumerics: SPACES).

11FEB2012 Version 5-18

GNU COBOL 2.0 Programmers Guide DATA DIVISION

b. Initialize small tables at compile time by including a VALUE clause on the group item that serves as a “parent”
to the table, as follows:

05 SHIRT-SIZES VALUE “S 14M 15L 16XL17”.
10 SHIRT-SIZE-TBL OCCURS 4 TIMES.
15 SST-SIZE PIC X(2).
15 SST-NECK PIC 9(2).

c. Initialize tables of almost any size at compilation time by utilizing the REDEFINES clause:

05 SHIRT-SIZE-VALUES.

10 PIC X(4) VALUE “S 14”.
10 PIC X(4) VALUE “M 15”.
10 PIC X(4) VALUE “L 16”.
10 PIC X(4) VALUE “XL17”.
@5 SHIRT-SIZES REDEFINES SHIRT-SIZE-VALUES.
10 SHIRT-SIZE-TBL OCCURS 4 TIMES.
15 SST-SIZE PIC X(2).
15 SST-NECK PIC 9(2).

Admittedly, the table shown in #3c is much more verbose than #3b. What is good about #3c, however, is that
you can have as many FILLER/VALUE items as you need for a larger table (and those values can be as long as
necessary!

Many COBOL compilers do not allow the use of VALUE and OCCURS on the same data item; additionally, they
don’t allow a VALUE clause on a data item subordinate to an OCCURS. GNU COBOL, however, has neither of
these restrictions!

Observe the following example, which illustrates the fourth manner in which tables may be initialized in GNU

COBOL:
05 X OCCURS 6 TIMES.
10 A PIC X(1) VALUE €?°.
10 B PIC X(1) VALUE ‘%’.
10 N PIC 9(2) VALUE 1e.

In this example, all six “A” items will be initialized to “?”, all six “B” items will be initialized to “%” and all six “N”
items will be initialized to 10. It’s not clear exactly how many times this sort of initialization will be useful, but it’s
there if you need it.

See Also...
The INITIALIZE Statement 6.2.22

11FEB2012 Version 5-19

GNU COBOL 2.0 Programmers Guide

DATA DIVISION

5.2.2. Defining SCREEN SECTION Data Items

Figure 5-11 - SCREEN SECTION Data Item Description Syntax

level-number [identifier-1|FILLER]
[AUTO|AUTO-SKIP|AUTOTERMINATE]
BELL [BEEP]
BACKGROUND-COLOR IS integer-1|identifier-2]
BLANK LINE|SCREEN]
BLANK WHEN ZERO]
BLINK]

ERASE EOL |EOS]
FOREGROUND-COLOR IS integer-3|identifier-4]

FROM literal-1|identifier-5
T0 identifier-6 1
USING identifier-7

[FULL|LENGTH-CHECK]
[HIGHLIGHT |LOWLIGHT]
[JUSTIFIED RIGHT]

[LEETLINE]

[LINE NUMBER IS [PLUS|+] integer-4|identifier-8 1|
[OCCURS integer-5 TIMES]
[OVERLINE]

[PICTURE picture-string]
[

[

[

[

[

[

[

~ o~ o~ M ™™ @ ~< ™

[|

PROMPT [CHARACTER IS literal-2|identifier-9 1]
REQUIRED | EMPTY-CHECK]

REVERSE-VIDEQ]

SECURE |NO-ECHO]

UNDERLINE]
VALUE IS [ALL] literal-3]

COLUMN NUMBER IS [PLUS|+] integer-2|identifier-3]

SIGN IS LEADING |TRAILING [SEPARATE CHARACTER]

The syntax skeleton shown
here describes how data
items are defined in the
SCREEN SECTION.

These data items are used
via special forms of the
ACCEPT and DISPLAY verbs
to create full-screen TUI
(“Textual User Interface”)
programs.

1. Dataitems defined in the SCREEN SECTION describe input, output or combination screen layouts to be used with
DISPLAY or ACCEPT statements. These screen layouts may define the entire available screen area or any subset

of it.

2. The term “available screen area” is a nebulous one in those environments where command-line shell sessions are
invoked within a graphical user-interface environment (as will be the case on Windows, OSX and most Unix/Linux
systems) — these environments allow command-line session windows to exist with a variable number of available
screen rows and columns. When you are designing GNU COBOL screens, you need to do so with an awareness of

the logical row/column geometry the program will be executing within.

11FEB2012 Version

5-20

GNU COBOL 2.0 Programmers Guide DATA DIVISION

Data items with level numbers 01 (Constants), 66, 78 and 88 may be used in the SCREEN SECTION; they have the
same syntax, rules and usage as they do in the other DATA DIVISION sections.

Without LINE or COLUMN clauses, SCREEN SECTION fields will display on the console window beginning at
whatever line/column coordinate is stated or implied by the ACCEPT or DISPLAY statement that presents the
screen item. After a field is presented to the console window, the next field will be presented immediately
following that field.

A LINE clause explicitly stated in the definition of a SCREEN SECTION data item will override any LINE clause
included on the ACCEPT or DISPLAY statement that presents that data item to the screen. The same is true of
COLUMN clauses.

The Tab and Back-Tab (Shift-Tab) keys will position the cursor from field to field in the line/column sequence in
which the fields occur on the screen at execution time, regardless of the sequence in which they were defined in
the SCREEN SECTION.

See Also...
Defining Level-01 Constants 5.2.3 Defining Level-88 Condition Names 5.2.7
Defining Level-66 RENAMES Data Iltems 5.2.4 The ACCEPT Statement (Screen Data) 6.4.1.4
Defining Level 78 Constants 5.2.6 The DISPLAY Statement (Screen Data) 6.4.12.4

5.2.2.1. AUTO | AUTO-SKIP | AUTOTERMINATE Clause

1.

The AUTO clause (the three forms are all equivalent) will
cause the cursor to automatically advance to the next [AUTO | AUTO-SKIP | AUTOTERMINATE]
input-enabled field if the field having the AUTO clause is
completely filled.

5.2.2.2. BACKGROUND-COLOR Clause

The BACKGROUND-COLOR clause is used to specify the
screen background color of the screen data item or the [BACKGROUND-COLOR IS {
default screen background color of subordinate items if

BACKGROUND-COLOR is used on a group item. You
specify colors by number (0-7), or by using the constant names provided in the “screenio.cpy” copybook (which is
provided with all GNU COBOL source distributions).

integer-1 }
identifier-2]

BACKGROUND-COLOR values are inheritable from previous fields - they are not inherited from the prior field
encountered but rather from parent data items (data items with numerically lower level numbers).

The following is the GNU COBOL color palette:

Figure 5-12 - The GNU COBOL Color Palette (Windows Console)

Color Integer Value “screenio.cpy” Constant Name e HIGHLIGHT
Appearance Appearance
COB-COLOR-BLACK
COB-COLOR-BLUE
COB-COLOR-GREEN
COB-COLOR-CYAN
COB-COLOR-RED
COB-COLOR-MAGENTA
COB-COLOR-YELLOW

COB-COLOR-WHITE

N O hWIN| R

5.2.2.3. BEEP | BELL Clause

11FEB2012 Version 5-21

GNU COBOL 2.0 Programmers Guide DATA DIVISION

1.

Use the BELL or BEEP clauses (they are synonymous) to cause an audible tone to occur

when the screen item is DISPLAYed (). [BELL | BEEP]

5.2.2.4. BLANK LINE and BLANK SCREEN Clauses

The BLANK SCREEN clause will blank-out the entire screen prior to displaying the
new screen contents described by the screen data item whose description this [BLANK { LINE }]
clause is part of.

The BLANK LINE clause will blank out the entire screen line upon which the screen
data item whose description contains this clause prior to displaying this screen data item.

Blanked-out areas will have their foreground and background colors set to the attributes of the field containing
the BLANK clause.

This clause is useful when one SCREEN SECTION item is being DISPLAYed over the top of a previously-DISPLAYed
one.

5.2.2.5. BLANK WHEN ZERO Clause

1.

The BLANK WHEN ZERO will cause that screen data item’s value to be automatically
transformed into SPACES if a value of 0 is ever put into the field via a FROM, USING or
VALUE clause.

BLANK WHEN ZERO

5.2.2.6. BLINK Clause

The BLINK clause modifies the visual appearance of the displayed field by making the field [BLINK]
contents blink. The manner in which the blinking is accomplished will vary, depending upon
the “curses” package built into the GNU COBOL implementation you’re using, as well as the
visual presentation capabilities of the command window shell you’re using. The Windows console, for example,
does not support blinking, so the visual effect of BLINK in a native Windows or MinGW version of GNU COBOL is
to elevate the BACKGROUND-COLOR intensity (normally low) to high intensity.

See Figure 5-12.for the GNU COBOL color palette. The “HIGHLIGHT” column shows the effect the BLINK clause
will have on BACKGROUND-COLOR when running within a Windows console window.

5.2.2.7. COLUMN Clause

The COLUMN clause provides a means of
explicitly stating in which column a field [COLUMN NUMBER IS [PLUS | +] { l:nteg?r'-z }]
should be presented on the console window identifier-3
(it’s line location will be determined by the
LINE clause).

You may abbreviate COLUMN as COL.
The value of integer-2 must be 1 or greater.

If identifier-3 is used to specify either an absolute or relative column position, identifier-3 must be defined as a PIC
9 item without editing symbols. The value of identifier-3 at the time the screen data item is presented must be 1
or greater.

Any numeric USAGE is allowed for identifier-3 except for COMPUTATIONAL-1 or COMPUTATIONAL-2. Note that
either of these floating-point USAGE specifications will be accepted, but will produce unpredictable results.

Coordinates may be stated on an absolute basis (i.e. “COLUMN 5”) or on a relative basis based upon the end of
the previously-presented field (i.e. “COLUMN PLUS 1”).

The symbol “+” may be used in lieue of the word PLUS, if desired; if “+” is used in combination with integer-2,
however, there must be at least one space separating it from integer-2. Failure to include this space will cause

11FEB2012 Version 5-22

GNU COBOL 2.0 Programmers Guide DATA DIVISION

the “+” sign to be simply treated as part of integer-2 and will treat the COLUMN clause as an absolute column
specification rather than a relative one.

If a screen data items description includes the FROM, TO, USING or VALUE clause but has no COLUMN clause,
“COLUMN PLUS 1” will be assumed.

5.2.2.8. ERASE EOL and ERASE EOS Clauses

The ERASE EOS clause will blank-out screen contents from the location where the
screen data item whose description contains this clause will be displayed, forward until [ERASE {E—OL }]
the end of the screen prior to displaying this screen data item. EOS

The ERASE EOL clause will blank-out screen contents from the location where the
screen data item whose description contains this clause will be displayed, forward until the end of that screen line
prior to displaying this screen data item.

Erased- areas will have their foreground and background colors set to the attributes of the field containing the
ERASE clause.

This clause is useful when one SCREEN SECTION item is being DISPLAYed over the top of a previously-DISPLAYed
one.

5.2.2.9. FOREGROUND-COLOR Clause

The FOREGROUND-COLOR clause is used to specify the
text color of the screen data item or the default text color
of subordinate items if FOREGROUND-COLOR is used on a
group item. You specify colors by number (0-7), or by
using the constant names provided in the “screenio.cpy” copybook (which is provided with all GNU COBOL source
distributions).

integer-3 } 1

[FOREGROUND-COLOR IS { identifier-4

FOREGROUND-COLOR values are inheritable from previous fields - they are not inherited from the prior field
encountered but rather from parent data items (data items with numerically lower level numbers).

See Figure 5-12.for the GNU COBOL color palette.

5.2.2.10. FROM, TO and USING Clauses

1.

The FROM clause is used to define a field whose contents should come

from the specified literal or identifier. FROM { literal-1 }

identifier-5
The TO clause is used to define a data-entry field with no initial value; 10
when a value is entered, it will be saved to the specified identifier. { } identifier-6

The USING clause is a combination of “FROM identifier-6” and “TO
identifier-6".

5.2.2.11. FULL | LENGTH-CHECK Clause

1.

The FULL or LENGTH-CHECK clause forces the user to enter data into the [EULL | LENGTH-CHECK]

field it is specified on (or into all subordinate input-capable fields if

specified on a group item) sufficient to fill every character position of the field. In order to take effect, the user
must move the cursor into the field having the FULL/LENGTH-CHECK clause in its definition. The ACCEPT
statement will ignore the Enter key and any other cursor-moving keystrokes that would cause the cursor to move
to another screen item unless the proper amount of data has been entered into the field. Function keys will still
be allowed to terminate the ACCEPT, however. In order to be functional, this attribute must be supported by the
underlying “curses” package your GNU COBOL package was built with. As of this time, the PDCurses package
(used for native Windows or MinGW builds) does not support FULL/LENGTH-CHECK.

11FEB2012 Version 5-23

GNU COBOL 2.0 Programmers Guide DATA DIVISION

See Also...

The ACCEPT Statement (Screen Data) 6.4.1.4 ‘

5.2.2.12. HIGHLIGHT and LOWLIGHT Clauses

The HIGHLIGHT and LOWLIGHT clauses control the intensity of text (FOREGROUND-
COLOR). This is intended to provide a three-level intensity scheme (LOWLIGHT ... [{w }]
nothing (Normal) ... HIGHLIGHT). In environments such as a Windows console where LOWL IGHT
only two levels of intensity are supported, LOWLIGHT is the same as leaving this
clause off altogether.

See Figure 5-12.for the GNU COBOL color palette and the effect the HIGHTLIGHT clause has on it in 2-level
intensity environments such as Windows.

5.2.2.13. JUSTIFIED Clause

1.

The JUSTIFIED RIGHT clause, valid only on an alphabetic (PIC A) or alphanumeric (PIC
X) data item, will cause values shorter than the length of the data item to be right-
justified and space-filled when they are transferred into the screen data item via the
FROM or USING clause (the default behavior is to left-justify and space fill).

JUSTIFIED RIGHT

The word JUSTIFIED may be abbreviated as JUST.

5.2.2.14. LEFTLINE, OVERLINE and UNDERLINE Clauses

1.

The LEFTLINE, OVERLINE and UNDERLINE clauses will introduce a horizontal line at the

left, top or bottom edge of a screen field, respectively. [LEFTLINE]
These clauses may be used in any combination in a single field’s description. [OVERLINE]

These clauses are essentially non-functional when used within Windows command shell [UNDERLINE]

(cmd.exe) environments; those video attributes are not currently supported by the
Windows console window API.

Whether or not these clauses operate on Cygwin or UNIX/Linux systems will depend upon the video attribute
capabilities of the terminal output drivers being used.

5.2.2.15. LINE Clause

The LINE clause provides a means of explicitly
stating on which line a field should be presented [LINE NUMBER IS [PLUS | +]{ /:ntegf?lj-4 }]
on the console window (it’s column location will identifier-7

be determined by the COLUMN clause).

The value of integer-4 must be 1 or greater.

If identifier-7 is used to specify either an absolute or relative column position, identifier-7 must be defined as a PIC
9 item without editing symbols. The value of identifier-7 at the time the screen data item is presented must be 1
or greater.

Any numeric USAGE is allowed for identifier-7 except for COMPUTATIONAL-1 or COMPUTATIONAL-2. Note that
either of these floating-point USAGE specifications will be accepted, but will produce unpredictable results.

Coordinates may be stated on an absolute basis (i.e. “COLUMN 5”) or on a relative basis based upon the end of
the previously-presented field (i.e. “COLUMN PLUS 1”).

The symbol “+” may be used in lieue of the word PLUS, if desired; if “+” is used in combination with integer-4,
however, there must be at least one space separating it from integer-4. Failure to include this space will cause
the “+” sign to be simply treated as part of integer-4 and will treat the LINE clause as an absolute line specification
rather than a relative one.

11FEB2012 Version 5-24

GNU COBOL 2.0 Programmers Guide DATA DIVISION

7. If a screen data items description includes the FROM, TO, USING or VALUE clause but has no LINE clause, the
“current screen line” will be assumed.

5.2.2.16. OCCURS Clause

1. An OCCURS clause can be used to repeat screen field definitions. It may)
be used on either elementary or group data items. [OCCURS integer-1 TIMES]

2. If an identifier-1 was included in the description of the data item
containing the OCCURS clause, references to identifier-1 will need to be subscripted.

5.2.2.17. PICTURE Clause

1. The PICTURE clause specifies the type (A=Alphabetic, 9=Numeric,
X=Alphanumeric) and size of a screen field.

[PICTURE picture-string]

2. Ifthe screen data item whose description contains the PICTURE clause is an input field (meaning its definition
includes either the TO or USING clause), the type specified by the PICTURE (A or 9) will be enforced on the user.
For example, if the PICTURE is 9, only numeric characters (digits, decimal point, sign) will be accepted. If the
PICTURE is A, only letters and spaces will be accepted.

3. If a screen data item does not have a PICTURE clause, its size will be inferred from the literal or identifier
associated with the field via a FROM, TO or USING clause. If there is no such clause, then length will be inferred
from the VALUE clause. If there is no VALUE clause, the screen data item will be treated as a group item (if data
items that follow have a higher level number) or an elementary item of length 0 (if data items that follow have a
smaller or equal level number).

5.2.2.18. PROMPT Clause

1. This clause defines the character that will be used as

the fill-character for any input fields on the screen. [PROMPT [CHARACTER IS {

literal-2
b1
2. The default character, should no CHARACTER

identifier-8

specification be coded, or should the PROMPT clause
be absent altogether, is an underscore (“_").

3. PROMPT characters will be automatically transformed into SPACES upon input.

5.2.2.19. REQUIRED | EMPTY-CHECK Clause

1. The REQUIRED or EMPTY-CHECK clauses force the user to enter data
into the field it is specified on (or into all subordinate input-capable [REQUIRED | EMPTY-CHECK]
fields if REQUIRED/EMPTY-CHECK is specified on a group item). In
order to take effect, the user must move the cursor into the field having the REQUIRED/EMPTY-CHECK clause in
its definition. The ACCEPT statement will ignore the Enter key and any other cursor-moving keystrokes that
would cause the cursor to move to another screen item unless data has been entered into the field. Function
keys will still be allowed to terminate the ACCEPT, however. In order to be functional, this attribute must be
supported by the underlying “curses” package your GNU COBOL package was built with. As of this time, the
PDCurses package (used for native Windows or MinGW builds) does not support REQUIRED/EMPTY-CHECK.

See Also...

‘ The ACCEPT Statement (Screen Data) 6.4.1.4

5.2.2.20. REVERSE-VIDEO Clause

1. The REVERSE-VIDEO attribute reverses the meaning of the specified or implied
FOREGROUND-COLOR and BACKGROUND-COLOR attributes for the field (or all [REVERSE-VIDEO]
subordinate fields if used on a group item).

11FEB2012 Version 5-25

GNU COBOL 2.0 Programmers Guide DATA DIVISION

5.2.2.21. SECURE | NO-ECHO Clause

1. The SECURE or NO-ECHO clause (they are synonymous with each other) may
only be used on a field allowing data entry (USING or TO). This attribute will [SECURE | NO-ECHO]
cause all data entered into the field to appear as asterisks.

5.2.2.22. SIGN Clause

1. The SIGN clause specifies how an “S”
symbol (see section) within a PICTURE
clause will be interpreted. Without the
SEPARATE CHARACTER option, the sign of
the screen data item’s value will be encoded by transforming the last (TRAILING) or first (LEADING) digit.

LEADING

M}[SEPARATE CHARACTER]]

[SIGN IS {

If the SEPARATE CHARACTER clause is used, then an actual “+” or “-“ sign will be inserted into the field’s value as
the first (LEADING) or last (TRAILING) character.

2. When SEPARATE CHARACTER is specified, the “S” symbol in the data item’s PICTURE must be counted when
determining the data item’s size.

See Also...

‘ Defining Signed Data Items (SIGN) 5.2.1.9

5.2.2.23. VALUE Clause

1. The VALUE clause specifies an alphanumeric literal that will appear on
the screen at the explicit or implicit line/column position of the screen
data item.

[VALUE IS [ALL] literal-2]

2. A figurative constant may NOT be supplied as literal-2.

3. Theinclusion of a VALUE clause into a screen data item’s description overrides any FROM, TO or USING clause
that may be present.

4. If there is no PICTURE clause supplied, the size of the screen data item will be the length of the literal-2 value. If
there is no PICTURE clause and the ALL option is specified, the ALL option will be ignored.

5. Ifthereis a PICTURE clause specified along with the VALUE clause, then the ALL option, if any, will fill the field (up
to the size specified by the PICTURE) with repeated instances of literal-2 (including a possible trailing partial
instance).

5.2.3. 01-Level Constant Descriptions

Figure 5-13 - 01-Level Constant Description Syntax

The 01-level constant is one of four types of

01 constant-name-1 CONSTANT [IS GLOBAL] compilation-time constants that can be
declared within a program. The other three
{ BYTE -LENGTH } oF { identifier-1 } types are CDZ >7>8D|EFII\|JE constants, CDF >>SET
AS LENGTH usage-name constants an -level constants.

literal-1 . This particular type of constant declaration

provides the ability to determine the length of
a data item or the storage size associated with
a particular numeric USAGE type — something
not possible with the other types of constants.

EROM compilation-variable-name-1

1. The optional IS GLOBAL clause will make the constant’s value available to any nested subprograms.

2. Constants defined in this way become undefined once an END PROGRAM or END FUNCTION directive is
encountered in the input source.

11FEB2012 Version 5-26

GNU COBOL 2.0 Programmers Guide DATA DIVISION

Data descriptions of this form do not actually allocate any storage — they merely define a name (constant-name-1)
that may be used anywhere a numeric literal (BYTE-LENGTH or LENGTH options) or a literal of the same type as
literal-1 may be used.

The constant-name-1 name may not be referenced on a CDF statement.

Care must be taken that constant-name-1 does not duplicate any other data item name that has been defined in
the program as references to that data item name will refer to the constant and not the data item. The GNU
COBOL compiler will not issue a warning about this condition.

The value specified for usage-name-1 may be any of the USAGEs that do not use a PICTURE clause.

The BYTE-LENGTH clause will produce a numeric value for constant-name-1 identical to that which would be
returned by the BYTE-LENGTH intrinsic function executed against identifier-1 or a data item declared with a
USAGE of usage-name.

The LENGTH clause will produce a numeric value for constant-name-1 identical to that which would be returned
by the LENGTH intrinsic function executed against identifier-1 or a data item declared with a USAGE of usage-
name.

If used, usage-name may be any of BINARY-C-LONG, BINARY-CHAR, BINARY-DOUBLE, BINARY-LONG, BINARY-
SHORT, COMP-1 (or COMPUTATIONAL-1), COMP-2 (or COMPUTATIONAL-2), FLOAT-DECIMAL-16, FLOAT-
DECIMAL-34, FLOAT-LONG, FLOAT-SHORT, POINTER, or PROGRAM-POINTER.

Here is the listing of a GNU COBOL program that uses 01-level constants to DISPLAY the length (in bytes) of the various
PICTURE-less USAGE types.

IDENTIFICATION DIVISION.

PROGRAM-ID. USAGELengths.

DATA DIVISION.

WORKING-STORAGE SECTION.

01 Len-BINARY-C-LONG CONSTANT AS LENGTH OF BINARY-C-LONG.

01 Len-BINARY-CHAR CONSTANT AS LENGTH OF BINARY-CHAR.
01 Len-BINARY-DOUBLE CONSTANT AS LENGTH OF BINARY-DOUBLE.
01 Len-BINARY-LONG CONSTANT AS LENGTH OF BINARY-LONG.
01 Len-BINARY-SHORT CONSTANT AS LENGTH OF BINARY-SHORT.
01 Len-COMP-1 CONSTANT AS LENGTH OF COMP-1.

01 Len-COMP-2 CONSTANT AS LENGTH OF COMP-2.

01 Len-FLOAT-DECIMAL-16 CONSTANT AS LENGTH OF FLOAT-DECIMAL-16.
01 Len-FLOAT-DECIMAL-34 CONSTANT AS LENGTH OF FLOAT-DECIMAL-34.

01 Len-FLOAT-LONG CONSTANT AS LENGTH OF FLOAT-LONG.
01 Len-FLOAT-SHORT CONSTANT AS LENGTH OF FLOAT-SHORT.
01 Len-POINTER CONSTANT AS LENGTH OF POINTER.

01 Len-PROGRAM-POINTER CONSTANT AS LENGTH OF PROGRAM-POINTER.
PROCEDURE DIVISION.
000-Main.
DISPLAY "On this system, with this build of GNU COBOL, the"
DISPLAY "PICTURE-less USAGEs have these lengths (in bytes):"

DISPLAY " "

DISPLAY "BINARY-C-LONG: " Len-BINARY-C-LONG
DISPLAY "BINARY-CHAR: " Len-BINARY-CHAR
DISPLAY "BINARY-DOUBLE: " Len-BINARY-DOUBLE
DISPLAY "BINARY-LONG: " Len-BINARY-LONG
DISPLAY "BINARY-SHORT: " Len-BINARY-SHORT
DISPLAY "COMP-1: " Len-COMP-1
DISPLAY "COMP-2: " Len-COMP-2

DISPLAY "FLOAT-DECIMAL-16: " Len-FLOAT-DECIMAL-16
DISPLAY "FLOAT-DECIMAL-34: " Len-FLOAT-DECIMAL-34

DISPLAY "FLOAT-LONG: " Len-FLOAT-LONG
DISPLAY "FLOAT-SHORT: " Len-FLOAT-SHORT
DISPLAY "POINTER: " Len-POINTER
DISPLAY "PROGRAM-POINTER: " Len-PROGRAM-POINTER

11FEB2012 Version 5-27

GNU COBOL 2.0 Programmers Guide DATA DIVISION

STOP RUN

The output of this program, on my Windows 7 system with a 32-bit MinGW build of GNU COBOL is:

On this system, with this build of GNU COBOL, the
PICTURE-less USAGEs have these lengths (in bytes):

BINARY-C-LONG: 4
BINARY-CHAR: 1
BINARY-DOUBLE: 8
BINARY-LONG: 4
BINARY-SHORT: 2
COMP-1: 4
COMP-2: 8
FLOAT-DECIMAL-16: 8
FLOAT-DECIMAL-34: 1
FLOAT-LONG: 8
FLOAT-SHORT : 4
POINTER: 4
PROGRAM-POINTER: 4

See Also...

Nested Subprograms 7.6 Defining Level 78 Constants 5.2.6
The CDF >>DEFINE Statement The BYTE-LENGTH Intrinsic Function 6.1.14.6
The CDF >>SET Statement The LENGTH Intrinsic Function 6.1.14.31
Storage Format of Data (USAGE) 5.2.1.11

N
N
[uny

N
N
w

5.2.4. 66-Level Data Descriptions (RENAMES)

Figure 5-14 - 66-Level Data Description Syntax . . .
A 66-level data item regroups previously defined

items by specifying alternative, possibly
overlapping, groupings of elementary data
items.

66 identifier-1 RENAMES identifier-2 [THRU identifier-3] .

1. You must use the level number 66 for data description entries that contain the RENAMES clause.
2. Alevel-66 data item cannot rename a level-66, level-01, level-77, or level-88 data item.

3. The identifier-2 and identifier-3 data items, along with all data items defined between those two data items in the
program source, must all be contained within the same 01-level record description.

4. There may be multiple level-66 data items that rename data items contained within the same 01-level record
description.

5. Al RENAMES entries associated with one logical record must immediately follow that record's last data
description entry.

5.2.5. 77-Level Data Descriptions

1. A77-level data item is one described using the syntax covered in section where all of the following are true:

The level-number used is 77.

The data item is described in the WORKING-STORAGE, LOCAL-STORAGE or LINKAGE SECTION.
The data item is not named FILLER.

The data item is an elementary item.

The data item is not part of any group item.

The data item description does not contain the OCCURS or RENAMES clause.

-0 o0 oW

11FEB2012 Version 5-28

GNU COBOL 2.0 Programmers Guide

DATA DIVISION

See Also...

Defining Data Items 5.2

5.2.6. 78-Level Constant Descriptions

Figure 5-15 - 78-Level Constant Description Syntax

78 identifier-1 VALUE IS literal-1

constants.

The 78-level constant is one of four types of compilation-time
constants that can be declared within a program. The other three
types are CDF >>DEFINE constants, CDF >>SET constants and 01-level

1. Constants defined in this way become undefined once an END PROGRAM or END FUNCTION directive is

encountered in the input source.

See Also...
The CDF >>DEFINE Statement 2.2.1 Defining Level-01 Constants 5.2.3
The CDF >>SET Statement 2.2.3
5.2.7. 88-Level Condition Names
Figure 5-16 - 88-Level Condition Name Syntas
Condition names are
88 condition-name-1 VALUE IS { literal-1 [THRU literal-2 1] } ?;)sll_::'r’])(clj.e’; 1i:cRLr'LE t{1 t
VALUES ARE ata items tha

[WHEN SET TO FALSE IS literal-3]

receive their TRUE and
FALSE values based upon
the values of other data

items.

1. Condition names are always defined subordinate to another data item. That data item must be an elementary

item.

2. Condition names do not occupy any storage.

3. The VALUE(s) specified for the condition name specify the specific values and/or ranges of values of the parent
elementary data item that will cause the condition name to have a value of TRUE.

4. The optional FALSE clause defines an explicit value that will be assigned to the parent elementary data item
should the SET statement ever be used to set the condition-name-1 to FALSE.

See Also...

Condition Names 6.1.4.2.1 I ’

The SET condition-name Statement 6.4.39.6

11FEB2012 Version

5-29

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

6. PROCEDURE DIVISION

The PROCEDURE DIVISION of any GNU COBOL program marks the point where all executable code is written.
6.1. General PROCEDURE DIVISION Components

6.1.1. General Format of the PROCEDURE DIVISION

Figure 6-1 - General PROCEDURE DIVISION Syntax

It is in the PROCEDURE DIVISION that all executable
PROCEDURE DIVISION program code will be placed.

[USING argument-1 ..]
[RETURNING identifier-1] .
[DECLARATIVES
[declaratives-procedure 1] ..
END DECLARATIVES.
[section-name-1 SECTION.]

[paragraph-name-1.]

[procedural-sentence-1] ..

1. The USING clause defines arguments that may be passed to a GNU COBOL program serving as a subprogram. All
identifiers specified on the USING clauses must be defined in the LINKAGE SECTION.

2. The RETURNING clause can be used as a means of specifying and documenting a value that a subprogram can pass
back to the program that invoked it. Main programs that wish to “pass back” a return code value to the operating
system when they exit do so simply by MOVEing a value to the RETURN-CODE special register, and do not need (or
use) a RETURNING clause on their PROCEDURE DIVISION header.

3. The first (optional) segment of any PROCEDURE DIVISION is a special area known as “DECLARATIVES”. In this area,
you may define processing routines that are to be used as special “trap” routines executed only when certain
events occur.

4. The various sections and paragraphs in which the procedural logic of your program will be coded will follow any
“DECLARATIVES”. These sections and paragraphs are discussed in more detail in section 0.

See Also...
Special Registers 6.1.13 The MOVE Statement 6.2.26
Subprogram Argument Definitions 6.1.2 Sub-programming O
Using DECLARATIVES 6.1.4

6.1.2. General Format for Subprogram Arguments

Figure 6-2 - Syntax of a PROCEDURE DIVISION USING Argument

AUTO
Y {SAE\iEEENCE‘ }[UNSIGNED] | SIZE IS | DEFAULT || [OPTIONAL] identifier-:
integer-1

1. The BY REFERENCE clause indicates that the program will be passed the address of the data item corresponding to
a program argument; any changes this program makes to a BY REFERENCE argument will be passed back to the
calling program.

11FEB2012 Version 6-1

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

2. BY REFERENCE is the assumed default for the first USING argument should no BY clause be specified for it.
Subsequent arguments will assume the “BY” specification of the argument prior to them should they lack a BY
clause of their own.

3. The BY VALUE clause indicates the program will be passed a copy of the data item from the calling program that
corresponds to the argument. The contents of BY VALUE arguments can be changed by the subprograms receiving
them, but those changes will not “find their way” back to the calling program.

4. If the calling program passes an argument BY REFERENCE or BY CONTENT, the subprogram should specify that
argument as “BY REFERENCE” on its PROCEDURE DIVISION header. If the calling program passes an argument BY
VALUE, the subprogram should specify that argument as “BY VALUE” on its PROCEDURE DIVISION header.

5. The various SIZE clauses specify the size (in bytes) of received BY VALUE arguments. The SIZE IS AUTO clause (the
default) indicates that argument size will be determined automatically based upon the size of the item in the calling
program. The remaining SIZE options allow you to force a specific size to be assumed.

6. The UNSIGNED clause will add “unsigned” to the C-language code generated when defining the argument in the
function header of the C function corresponding to the GNU COBOL subprogramming. This is of value when a C
program will be calling this subprogram.

See Also...
‘ The CALL Statement 6.4.5 ‘ ‘ Sub-programming 0

6.1.3. PROCEDURE DIVISION Sections and Paragraphs

The PROCEDURE DIVISION is the only one of the COBOL divisions that allows you to create your own sections and
paragraphs. These are collectively referred to as procedure names. Procedure names are oprtional in the PROCEDURE
DIVISION and — when used — are named entirely according to the needs and whims of the programmer.

When procedure names are defined, the entire collection of GNU COBOL statements that follow the procedure name
are collectively referred to as a procedure. If there are no procedure names defined whatsoever, then the entire set of
all statements defined within the PROCEDURE DIVISION constituite a single (unnamed) procedure.

Procedure names may be up to thirty one (31) characters long, and may consist of letters, numbers, dashes and
underscores, with just one caveat. A procedure name may neither begin nor end with a dash (-) or underscore (_)
character. This means that “17” is a perfectly valid procedure name.

There are two circumstances under which the use of certain GNU COBOL statements or options will require the
specification of procedures. These situations are:

1. When DECLARATIVES are specified. These are discussed in section 6.1.4 (“General Format for DECLARATIVES
Procedures”).

2. When any PROCEDURE DIVISION statement that references procedures is used. These statements are:
e ALTER
e GOTO
e MERGE (with an OUTPUT PROCEDURE)
e PERFORM
e SORT (with an INPUT PROCEDURE and/or an OUTPUT PROCEDURE)

See Also...

User-defined Names 1.10 The PERFORM Statement (Procedural) 6.2.30.1
The ALTER Statement 6.2.4 The SORT Statement (File Sort) 6.4.40.1
The GO TO Statement 6.2.20 USE Statements and DECLARATIVES 6.1.4

The MERGE Statement 6.4.25

6.1.4. General Format for DECLARATIVES Procedures

11FEB2012 Version 6-2

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION
Figure 6-3 - General DECLARATIVES Procedure Syntax
section-name-1 SECTION.
INPUT
OUTPUT
[GLOBAL] AFTER STANDARD {W } PROCEDURE ON { 1-0

EXTEND
file-name-1 ...

FOR DEBUGGING ON

ALL PROCEDURES
REFERENCES OF identifier-1

USE procedure-name-1
[GLOBAL] BEFORE REPORTING identifier-2
AFTER {]‘
EC
{ [paragraph-name-1] sentence-1 .. } ..

1. The DECLARATIVES area of the PROCEDURE DIVISION allows the programmer to define a series of “trap”
procedures (referred to as declarative procedures) capable of intercepting certain events that may occur at
program execution time. The syntax diagram above shows the format of a single such procedure.

2. DECLARATIVES may contain any number of declarative procedures, but no two declarative procedures should be

designed to trap the same event.

3. The USE BEFORE REPORTING and AFTER EXCEPTION CONDITION clauses are currently syntactically recognized but

otherwise unsupported.

4. The USE FOR DEBUGGING clause allows you to define a declarative procedure that will be invoked immediately

before:

a. The specified identifier is referenced (REFERENCES OF ...), or ...

b. The named procedure is executed (procedure-name-1), or ...

c. Any procedure is executed (ALL PROCEDURE

).

Any USE FOR DEBUGGING declarative procedures will be ignored at compilation time unless WITH DEBUGGING

MODE is specified in the SOURCE-COMPUTER paragraph.

Any USE FOR DEBUGGING declarative procedures will be ignored at execution time unless the “COB_SET_DEBUG”

environment variable has been set to a value of “Y”,

AT

y or

/1111'

The typical use of a USE FOR DEBUGGING declarative procedure is to DISPLAY the DEBUG-ITEM special register,
which will be implicitly and automatically created in your program for you if WITH DEBUGGING MODE is active.

5. The structure of DEBUG-ITEM will be as follows:

@1 DEBUG-ITEM.

05 DEBUG-LINE PIC X(6).
05 FILLER PIC X(1) VALUE SPACE.
05 DEBUG-NAME PIC X(31).
05 FILLER PIC X(1) VALUE SPACE.
05 DEBUG-SUB-1 PIC S9(4)

SIGN LEADING SEPARATE.
05 FILLER PIC X(1) VALUE SPACE.
05 DEBUG-SUB-2 PIC S9(4)

SIGN LEADING SEPARATE.
05 FILLER PIC X(1) VALUE SPACE.
05 DEBUG-SUB-3 PIC S9(4)

SIGN LEADING SEPARATE.
05 FILLER PIC X(1) VALUE SPACE.

The program line number of the statement that triggered the
declaratives procedure.

The procedure name or identifier name that triggered the
declaratives procedure.

The first subscript value (if any) for the reference of the identifier
that triggered the declaratives procedure.

The second subscript value (if any) for the reference of the identifier
that triggered the declaratives procedure.

The third subscript value (if any) for the reference of the identifier
that triggered the declaratives procedure.

11FEB2012 Version

6-3

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

05 DEBUG-CONTENTS PIC X(31). A (brief) statement of the manner in which the procedure that
triggered the declaratives procedure was executed or the first 31
characters of the value of the identifier whose reference triggered
the declaratives procedure (the value after the statement was
executed)

6. The USE AFTER STANDARD ERROR PROCEDURE clause defines a declarative procedure invoked any time a failure is
encountered with the specified I/O type (or against the specified file(s)).

7. The GLOBAL option, if used, allows a declarative procedure to be used across all programs in the same compilation
group.

8. Declarative procedures outines (of any type) may not reference any other procedures defined outside the scope of
DECLARATIVES.

See Also...
The SOURCE-COMPUTER Paragraph 4.1.1 Using DECLARATIVES 6.1.4

Special Registers 6.1.13 Execution-time Environment Variables 8.2.4

6.1.5. Table References

COBOL uses parenthesis to specify the subscripts used to reference table entries (tables in COBOL are what other
programming languages refer to as arrays).

For example, observe the following data structure which simulates a 4 column by 3 row grid of characters:

01 GRID.
05 GRID-ROW OCCURS 3 TIMES.
10 GRID-COLUMN OCCURS 4 TIMES.
15 GRID-CHARACTER PIC X(1).

A reference to the GRID-CHARACTER shaded in the following diagram:

i

Would be coded as:

GRID-CHARACTER (2, 3)

Subscripts may be specified as numeric (integer) literals, PIC 9 (integer) data items, data items created with any of the
PICTURE-less integer USAGE specifications, USAGE INDEX data items or arithmetic expressions resulting in an integer
value. The ability to use full arithmetic expressions as table (array) subscripts, while common in many languages, is rare
in the COBOL universe, only having come into existence with the COBOL2002 standard.

See Also...

‘ Arithmetic Expressions 6.1.4.1 l ‘ Table Subscript versus Table Index 9.3

6.1.6. Qualification of Data Names

COBOL allows data names to be duplicated within a program, provided references to those data names may be made in
such a manner as to make those references unique through a process known as qualification.

To see qualification at work, observe the following segments of two data records defined in a COBOL program:

01 EMPLOYEE.
05 MAILING-ADDRESS.

10 STREET PIC X(35).
10 CITY PIC X(15).
10 STATE PIC X(2).
10 ZIP-CODE.

15 ZIP-CODE-5 PIC 9(5).

11FEB2012 Version 6-4

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

15 FILLER PIC X(4).
01 CUSTOMER.
05 MAILING-ADDRESS.

10 STREET PIC X(35).
10 CITY PIC X(15).
10 STATE PIC X(2).
10 ZIP-CODE.
15 ZIP-CODE-5 PIC 9(5).
15 FILLER PIC X(4).

Now, let’s deal with the problem of setting the CITY portion of an EMPLOYEEs MAILING-ADDRESS to “Philadelphia”.
Clearly, the following cannot work because the compiler will be unable to determine which of the two CITY fields you
are referring to:

MOVE “Philadelphia” TO CITY.
We could qualify the reference to CITY as follows, in an attempt to correct the problem:

MOVE “Philadelphia” TO CITY OF MAILING-ADDRESS.

Unfortunately that too is insufficient because it is still insufficient to identify specifically which CITY is being referenced.
To truly identify which specific CITY you want, you’d have to code the following:

MOVE “Philadelphia” TO CITY OF MAILING-ADDRESS OF EMPLOYEE.

Now there can be no confusion as to which CITY is being changed. Fortunately, you don’t need to be quite so specific;
COBOL allows intermediate qualification levels to be omitted. This allows you to specify:

MOVE “Philadelphia®” TO CITY OF EMPLOYEE.
If you need to qualify a reference to a table, do so as follows:
identifier-1 OF identifier-2 (subscript ...)

The reserved word “IN” may be used in lieu of “OF”.

6.1.7. Reference Modifiers

Figure 6-4 - Reference Modifier Syntax

{identifier—l [OF|IN identifier-2 1[(subscript ..)]}(start : [length 1)
intrinsic-function-reference

The COBOL '85 standard introduced the concept of a reference modifier to facilitate references to only a portion of a
data item; GNU COBOL fully supports reference modification.

The start value indicates the starting character position being referenced (character position values start with 1, not 0
as is the case in some programming languages) and length specifies how many characters are wanted. If no length is
specified, a value equivalent to the remaining character positions from start to the end will be assumed. Both start and
length may be specified as integer numeric literals, integer numeric data items or arithmetic expressions with an integer
value. The default length is 1.

Here are a few examples:

CUSTOMER-LAST-NAME (1:3) references the first three characters of CUSTOMER-LAST-NAME.

CUSTOMER-LAST-NAME (4:) references all character positions of CUSTOMER-LAST-NAME from the fourth
onward.

FUNCTION CURRENT-DATE (5:2) references the current month.

Hex-Digits (Nibble + 1:1) Assuming that “Nibble” is a numeric data item with a value in the range 0-15, and

Hex-Digits is a PIC X(16) item with a value of “0123456789ABCDEF”, this converts
that numeric value to a hexadecimal digit.

Hex-Digits (Nibble + 1:) Does the same as the above — if you leave out the length, 1 is assumed; YOU STILL
NEED THE “:” CHARACTER THOUGH.

11FEB2012 Version 6-5

GNU COBOL 2.0 Programmers Guide

PROCEDURE DIVISION

Array-Element (6) (7:5)

References 5 characters in the 6™ occurrence of Array-Element, starting at character

position 7.

Reference modification may be used anywhere an identifier is legal, including serving as the receiving field of
statements like MOVE, STRING and ACCEPT, to name a few.

See Also...

‘ The CURRENT-DATE Intrinsic Function

6.1.14.12

6.1.8. Expressions

GNU COBOL supports two basic types of Expressions

» Arithmetic expressions, which calculate a numeric result
» Conditional Expressions, which calculate a TRUE or FALSE value

Unlike other programming languages, which allow arithmetic values such as 0 and -1 to represent FALSE and TRUE,
respectively, GNU COBOL treats logical TRUE/FALSE values as something different from 0/-1.

6.1.8.1. Arithmetic Expressions

Arithmetic expressions are formed using following operators. In complex expressions composed of multiple operators,
a precedence of operation applies whereby those operations having a higher precedence are computed first before
operations with a lower precedence.

Precedence Operation Discussion
Figure 6-5 — Unary “Minus” (-) Operator Syntax The unary “minus” (-) operator
numeric-literal-1 returr?s the e'aritr?metic
-1 identifier-1 negation of its smgle ‘
(arithmetic-expression-1) argu ment, effectively returnlng
as its value the product of its
1t argument and -1.
(Highest) Figure 6-6 — Unary “Plus” (+) Operator Syntax
The unary “plus” (+) operator
numeric-literal-1 returns the value of its single
+1 identifier-1 argument, effectively returning
(arithmetic-expression-1) as its value the product of its
argument and +1.
The value of the left-hand
argument raised to the power
Figure 6-7 - Exponentiation Operator (** or) Syntax indicated by the right-hand
argument is computed.
nd numeric-literal-1 numeric-literal-2 .
2 identifier-1 ** 1 identifier-2 aNI(I);v;/IZZeger powers are
(arithmetic-expression-1) (arithmetic-expression-2) ’
GNU COBOL allows the “7”
symbol to be used in lieu of the
“**” symbol.
Figure 6-8 - Multiplication Operator (*) Syntax
numeric-literal-1 numeric-literal-2 The product of the left-hand
3™ identifier-1 * 1 identifier-2 argument and the right-hand
(arithmetic-expression-1) (arithmetic-expression-2) argument is computed.

11FEB2012 Version

6-6

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

Precedence Operation Discussion

The value of the left-hand
Figure 6-9 - Division Operator (/) Syntax argument divided by the right-

hand argument is computed.
rlrume'rl'c-llteral-l f)umetr/'c-l/teral-z it sl Hbe e S e Es
identifier-1 / identifier-2 a value of zero, expression
(arithmetic-expression-1) (arithmetic-expression-2) evaluation will be prematurely

terminated before a value is
generated. This may cause
program failure at run-time.

Figure 6-10 - Addition Operator (+) Syntax

numeric-literal-1 numeric-literal-2 The sum of the left-hand
identifier-1 + 1 identifier-2 argument and the right-hand
(arithmetic-expression-1) (arithmetic-expression-2) argument is computed.
4th
(Lowest) Figure 6-11 - Subtraction Operator (-) Syntax
numeric-literal-1 numeric-literal-2 The value of the right-hand
identifier-1 - 1 identifier-2 argument subtracted from the
(arithmetic-expression-1) (arithmetic-expression-2) SR R
computed.

The syntaxctical rules of GNU COBOL, allowing a dash (-) character in data item names, can lead to some ambiguity.
Observe this sample GNU COBOL code:

01 C PIC 9 VALUE 5.
o1 D PIC 9 VALUE 2.
01 C-D PIC 9 VALUE 7.
o1 I PIC 9 VALUE 0.

COMPUTE I=C-D+1
DISPLAY I

What should be displayed by the DISPLAY statement? The number “4”, which is the result of subtracting the value of D
(the value 2) from the value of C (the value 5) and then adding 1 or the number “8”, which is the value of adding 1 to
the value of data item C-D?

The right answer is “8” — the value of data item C-D plus 1!

The GNU COBOL compiler actually went through the following decision-making logic when generating code for the
COMPUTE Statement

1. Isthere a data item named “C-D” defined? If so, use its value for “C-D”

2. Ifthereis no “C-D” data item, then check if there are “C” and “D” data items. If not, the COMPUTE statement is in
error. If there are, however, then code will be generated to subtract the value of “D” from “C” and add 1 to the
result.

“w u

Had there been at least one space to the left and/or the right of the “-“, there would have been no ambiguity — the
compiler would have been forced to use the individual “C” and “D” data items.

It’s considered good COBOL programming practice to always code at least one space to both the left and right of every
arithmetic operator as well as the “=" sign on a COMPUTE.

11FEB2012 Version 6-7

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

Here are some examples of how the precedence of operations affects the results of arithmetic expressions (all examples
use numeric literals, to simplify the discussion).

Expression ‘ Result Notes

3*%4+1 13 * has precedence over +
4*273 -10 22 2%is 8 (* has precedence over *), times 4 is 32, minus 10 is 22.
(4*2)~3 -10 502 Parenthesis provide for a recursive application of the arithmetic expression

rules, effectively allowing you to alter the precedence of operations.

4 times 2 is 8 (the use of parenthesis “trumps” the exponention operator,
so the multiplication happens first); 8 A 3 is 512, minus 10 is 502.

5/25+7%*2-1.15 15.35 Integer and non-integer operands may be freely intermixed

Of course, arithmetic expression operands may be numeric data items (any USAGE except DISPLAY, POINTER or
PROGRAM POINTER) as well as numeric literals.

6.1.8.2. Conditional Expressions

Conditional expressions are expressions which identify the conditions under which a program may make a decision
about processing to be performed. As such, conditional expressions produce a value of TRUE or FALSE.

There are seven types of conditional expressions, as follows, in increasing order of complexity.

6.1.8.2.1. Condition Names (Level-88 Items)

These are the simplest of all conditions. Observe the following code:

05 SHIRT-SIZE PIC 99V9.

88 LILLIPUTIAN VALUE @ THRU 12.5
88 XS VALUE 13 THRU 13.5.
88 S VALUE 14, 14.5.

88 M VALUE 15, 15.5.

88 L VALUE 16, 16.5.

88 XL VALUE 17, 17.5.

88 XXL VALUE 18, 18.5.

88 BROBDINGNAGIAN VALUE 19 THRU 99.9.

The condition names “LILLIPUTIAN”, “XS”, “S”, “M”, “L”, “XL”, “XXL” and “BROBDINGNAGIAN" will have TRUE or FALSE
values based upon the values within their parent data item (SHIRT-SIZE). So, a program wanting to test whether or not
the current SHIRT-SIZE value can be classified as “XL” could have that decision coded as a combined condition (the most
complex type of conditional expression), as either:

IF SHIRT-SIZE = 17 OR SHIRT-SIZE = 17.5
~or-
IF SHIRT-SIZE = 17 OR 17.5

Or it could utilize the condition name XL as follows:

IF XL

See Also...

Defining Level-88 Condition Names 5.2.7

11FEB2012 Version 6-8

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

6.1.8.2.2. Class Conditions

Figure 6-12 - Class Condition Syntax

Class conditions evaluate the type of data that is

- currently stored in a data item.
NUMERIC

ALPHABETIC
ALPHABETTIC -LOWER
ALPHABETIC-UPPER

OMITTED
class-name-1

identifier-1 IS [NOT] {

1. The NUMERIC class test considers only the characters “0”, “1”, ..., “9” to be numeric; only a data item containing
nothing but digits will pass a NUMERIC class test. Spaces, decimal points, commas, currency signs, plus signs, minus
signs and any other characters except the digit characters will all fail “NUMERIC” class tests.

2. The ALPHABETIC class test considers only upper-case letters, lower-case letters and SPACES to be alphabetic in
nature.

3. The ALPHABETIC-LOWER and ALPHABETIC-UPPER class conditions consider only spaces and the respective type of
letters to be acceptable in order to pass such a class test.

4. Note that what constitutes a “letter” (or upper/lower case too, for that manner) may be influenced through the use
of CHARACTER CLASSIFICATION specifications in the OBJECT-COMPUTER paragraph.

5. Only data items whose USAGE is either explicitly or implicitly defined as DISPLAY may be used in NUMERIC or any of
the ALPHABETIC class conditions.

6. Some COBOL implementations disallow the use of group items or PIC A items with NUMERIC class conditions and
the use of PIC 9 items with ALPHABETIC class conditions. GNU COBOL has no such restrictions.

7. The OMITTED class condition is used when it is necessary for a subprogram to determine whether or not a particular
argument was passed to it. In such class conditions, identifier-1 must be a LINKAGE SECTION item defined on the
USING clause of the subprograms PROCEDURE DIVISION header.

8. The class-name-1 option allows you to test for a user-defined class. Here’s an example. First, assume the following
SPECIAL-NAMES definition of the user-defined class “Hexadecimal”:

SPECIAL-NAMES.
CLASS Hexadecimal IS €@’ THRU €9°, ‘A’ THRU ‘F’, ‘a’ THRU ‘f’.

Now observe the following code, which will execute the 150-Process-Hex-Value procedure if Entered-Value contains
nothing but valid hexadecimal digits:

IF Entered-Value IS Hexadecimal
PERFORM 150-Process-Hex-Value
END-IF
See Also...

‘ The OBJECT-COMPUTER Paragraph 4.1.2 ‘ ‘ The CALL Statement 6.4.5

6.1.8.2.3. Sign Conditions

Figure 6-13 - Sign Condition Syntax

Sign conditions evaluate the numeric state of a PIC 9 data item.

POSITIVE
Identifier-1 IS [NOT] { NEGATIVE

ZERO

1. Only data items defined with some sort of numeric USAGE/PICTURE can be used for this type of class condition.

2. A POSITIVE or NEGATIVE class condition will be TRUE only if the value of identifier-1 is strictly greater than or less
than zero, respectively. A ZERO class condition can be passed only if the value of identifier-1 is exactly zero.

11FEB2012 Version 6-9

GNU COBOL 2.0 Programmers Guide

PROCEDURE DIVISION

6.1.8.2.4. Switch-Status Conditions

Figure 6-14 - Using Switch Conditions

Setting the switch and
running the program
(Unix/Cygwin/OSX)...

$ COB_SWITCH_1=ON

S export COB_SWITCH_1
S testprog

Switch 1 Set

$

C:>SET COB_SWITCH_1=ON
C:>testprog

Switch 1 Set

C:>

Setting the switch and
running the program
(Windows)...

Relevant sections of ‘testprog’...

ENVIRONMENT DIVISION.

SPECIAL-NAMES.
SWITCH-1

ON STATUS IS OK-To-Display.

PROCEDURE DIVISION.

IF OK-To-Display
DISPLAY ‘Switch 1 Set’
END-DISPLAY

END-IF

In the SPECIAL-NAMES paragraph, an external
switch name can be associated with one or
more condition names. These condition names
may then be used to test the ON/OFF status of
the external switch.

An example is shown to the left.

See Also...
‘ The SPECIAL-NAMES Paragraph 4.1.4
6.1.8.2.5. Relation Conditions
Figure 6-15 - Relation Condition Syntax
EQUAL TO
EQUALS

identifier-1

literal-1
arithmetic-expression-1
index-name-1

s [

GREATER THAN

LESS THAN Identifier-2
NOT 7] | LESS THAN OR EQUAL TO literal-2
T arithmetic-expression-2
= index-name-2
>
>=
<
L=

GREATER THAN OR EQUAL TO

These conditions evaluate how two different values “relate” to each other.

1. When comparing one numeric value to another, the USAGE and number of significant digits in either value are
irrelevant as the comparison is performed using the actual algebraic values.

2. When comparing strings, the comparison is made based upon the program’s collating sequence (see section). When
the two string arguments are of unequal length, the shorter is assumed to be padded (on the right) with a sufficient
number of SPACES as to make the two strings of equal length. String comparisons take place on a corresponding
character-by-character basis until an pair of characters is found that violates the condition being tested for based
upon the relative position of where each character in the pair falls in the program’s COLLATING SEQUENCE (as

defined in SPECIAL-NAMES).

11FEB2012 Version

6-10

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

3. There is no functional difference between using the wordy version (“IS EQUAL TO”, “IS LESS THAN”, ...) versus the
symbolic version (“=", “<”, ...) of the actual relation operators.

See Also...

‘ The SPECIAL-NAMES Paragraph 4.1.4

6.1.8.2.6. Combined Conditions

Figure 6-16 - Combined Condition Syntax

A combined condition is one that computes a TRUE/FALSE value from the
TRUE/FALSE values of two other conditions (which could — themselves —

ndition-1 AND ndition-2
o ° OR co 0 be combined conditions).

1. If either condition has a value of TRUE, the result of ORing the two together will result in a value of TRUE. Only
when ORing two FALSE conditions will a result of FALSE occur.

2. In order for AND to yield a value of TRUE, both conditions must have a value of TRUE. In all other circumstances,
AND produces a FALSE value.

3. When chaining multiple, similar conditions together with the same operator (OR/AND), and left or right arguments
having common operators and subjects, it is possible to abbreviate the program code. For example:

IF ACCOUNT-STATUS = 1 OR ACCOUNT-STATUS = 2 OR ACCOUNT-STATUS = 7

Could be abbreviated as:

IF ACCOUNT-STATUS 10R 20R 7

4. Just as multiplication takes precedence over addition in arithmetic expressions, so does AND take precedence over
OR in combined conditions. Use parenthesis to change this precedence, if necessary. For example:

FALSE OR FALSE AND TRUE evaluates to TRUE

FALSE OR (FALSE AND TRUE) evaluatesto TRUE (since AND has precedence over OR, this is identical to the
previous example)

(FALSE OR FALSE) AND TRUE evaluates to FALSE

6.1.8.2.7. Negated Conditions

Figure 6-17 - Negated Condition Syntax

A condition may be negated by prefixing it with the NOT operator.
NOT condition-1

1. The NOT operator has the highest precedence of all logical operators, just as a unary minus sign (which “negates” a
numeric value) is the highest precedence arithmetic operator.

2. Parenthesis must be used to explicitly signify the sequence in which conditions are evaluated and processed if the
default precedence isn’t desired. For example:

NOT TRUE AND FALSE AND NOT FALSE evaluates to FALSE AND FALSE AND TRUE which evaluates to FALSE
NOT (TRUE AND FALSE AND NOT FALSE) evaluates to NOT (FALSE) which evaluates to TRUE
NOT TRUE AND (FALSE AND NOT FALSE) evaluates to FALSE AND (FALSE AND TRUE) which evaluates to FALSE

6.1.9. Use of Periods (.)

All COBOL implementations distinguish between sentences and statements in the PROCEDURE DIVISION. A statement
is a single executable COBOL instruction. For example, these are all statements:

MOVE SPACES TO Employee-Address
ADD 1 TO Record-Counter
DISPLAY “Record-Counter=" Record-Counter

11FEB2012 Version 6-11

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

Some COBOL statements have a “scope of applicability” associated with them where one or more other statements can
be considered to be part of or related to the statement in question. An example of such a situation might be the
following, where the interest on a loan is being calculated and displayed - 4% interest if the loan balance is under
$10000 and 4.5% otherwise:

IF Loan-Balance < 10000

MULTIPLY Loan-Balance BY 0.04 GIVING Interest
ELSE

MULTIPLY Loan-Balance BY 0.045 GIVING Interest
DISPLAY “Interest Amount = “ Interest

In this example, the IF statement actually has a scope that can include two sets of associated statements — one set to be
executed when the IF condition is TRUE and another if it is FALSE.

Unfortunately, there’s a problem with the above. A human being looking at that code will probably understand that the
DISPLAY statement, because of its lack of indentation, is to be executed regardless of the TRUE/FALSE value of the IF
condition. Unfortunately, the GNU COBOL compiler (or any other COBOL compiler for that matter) won’t see it that
way because it really couldn’t care less what sort of indentation, if any, is used. In fact, any COBOL compiler would be
just as happy to see the code written like this:

IF Loan-Balance < 10000 MULTIPLY Loan-balance BY 0.04 GIVING Interest ELSE MULTIPLY Loan-
Balance BY 0.045 GIVING Interest DISPLAY “Interest Amount = “ Interest

So how then do we inform the compiler that the DISPLAY statement is outside the scope of the IF?
That’s where sentences come in.

A COBOL sentence is defined as any arbitrarily long sequence of statements, followed by a period (.) character. The
period character is what terminates the scope of a set of statements. Therefore, our example needs to be coded like
this:
IF Loan-Balance < 10000
MULTIPLY Loan-Balance BY 0.04 GIVING Interest
ELSE

MULTIPLY Loan-Balance BY 0.045 GIVING Interest.
DISPLAY “Interest Amount = “ Interest

See the period at the end of the second MULTIPLY (I highlighted it)? That is what terminates the scope of the “IF”, thus
making the DISPLAY something that will be executed regardless of how the “Loan-Balance < 10000” test evaluated.

6.1.10. Use of “VERB” / “END-VERB” Constructs

Prior to the 1985 COBOL standard, using a period character was the only way to signal the end of a statement’s scope.
Unfortunately, this caused some problems. Take a look at this code:

IFA=1 The problem with this code is that indentation — so critical
IFB=1 for improving the human-readability of a program —

ELSE DISPLAY “A & B = 17 provides an erroneous view of the logical flow. An ELSE is
IFB =1 always associated with the most-recently encountered IF;
DISPLAY “A NOT = 1 BUT B = 1” this means the highlighted ELSE will be associated with the
ELSE “IF B = 1” statement, not the “IF A = 1” statement.
DISPLAY “NEITHER A NOR B = 1”.

This sort of problem led to the “band-aid” solution™ IFA=1
shown to the right being added to the COBOL IFB=1
language. DISPLAY “A & B = 1”
ELSE
NEXT SENTENCE
ELSE
IF B =1
DISPLAY “A NOT = 1 BUT B = 1”

19 Yes, | realize you could have easily fixed the problem by changing the code to “IF A =1 AND B = 1", but that wouldn’t have

allowed me to make my case here

11FEB2012 Version 6-12

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

ELSE
DISPLAY “NEITHER A NOR B = 1”.

The NEXT SENTENCE statement informs the GNU COBOL compiler that if the “B = 1” condition is false, control should
fall into the first statement that follows the next period.

With the 1985 standard for COBOL, a much more elegant solution was introduced. Those COBOL verbs (statements)
that needed such a thing were allowed to use an “END-verb” construct to end their scope without disrupting the scope
of any statements whose scope they might have been in. Any COBOL 85 compiler would have allowed the following
solution to our problem:

IFA=1
IFB=1
DISPLAY “A & B = 1”
END-IF
ELSE
IFB =1
DISPLAY “A NOT = 1 BUT B = 1”
ELSE

DISPLAY “NEITHER A NOR B = 1”.

This new facility made the period almost obsolete, as our program segment would probably be coded like this today:

IFA=1
IFB=1
DISPLAY “A & B = 1”
END-IF
ELSE
IFB =1
DISPLAY “A NOT = 1 BUT B = 1”
ELSE
DISPLAY “NEITHER A NOR B = 1”
END-IF
END-IF

COBOL (GNU COBOL included) still requires that each PROCEDURE DIVISION paragraph contain at least one sentence if
there is any executable code in that paragraph, but a popular coding standard is now to simply code a single period
right before the end of each paragraph. Check out the “GCic” sample program in section 10.4 and you’ll see how that
would be done.

The standard for the COBOL language shows the various “END-verb” specifications to be optional because using a
period as a scope-terminator remains legal. Some statements have an “END-verb” scope-terminator defined for them
that they don’t appear to need.”

If you will be porting existing code over to GNU COBOL, you'll find it an accommodating facility capable of conforming to
language and coding standards that code is likely to use. If you are creating new GNU COBOL programs, however, |
would strongly counsel you to use the “END-verb” structures religiously in those programs.

See Also...

The NEXT SENTENCE Statement 6.4.28

6.1.11. Controlling Concurrent Access to Files

The manipulation of data files is one of the COBOL language’s great strengths. There are features built-in to the COBOL
language to deal with the possibility that multiple programs may be attempting to access the same file concurrently.
Multiple program concurrent access is dealt with in two ways — file sharing and record locking.

STRING (section 6.2.43) and UNSTRING (section 6.2.49), for example — could it be there are plans in the works for a future

standard to introduce an option to such statements that would need a scope-terminator?

11FEB2012 Version 6-13

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

Not all GNU COBOL implementations support file sharing and record-locking options. Whether they do or not depends
upon the operating system they were built for and the build options that were used when the specific GNU COBOL
implementation was generated.

6.1.11.1. File Sharing

GNU COBOL controls concurrent-file access at the highest level through the concept of file sharing, enforced when a
program attempts to OPEN a file. This is accomplished via a UNIX operating-system routine called “fentl()”. That
module is not currently supported by Windows™ and is not present in the MinGW Unix-emulation package. GNU
COBOL builds created using a MinGW environment will be incapable of supporting file-sharing controls — files will
always be shared in such environments. A GNU COBOL build created using the Cygwin environment on Windows would
have access to “fentl()” and therefore will support file sharing. Of course, actual Unix builds of GNU COBOL, as well as
0SX builds®, should have no issues because “fentl()” should be available.

Any limitations you impose on a successful OPEN will remain in place until your program either issues a CLOSE against
the file or terminates.

There are three ways in which concurrent access to a file may be controlled at the file level:

Sharing Effect

Optionon
“OPEN”

ALL OTHER When your program opens a file in this manner, no restrictions will be placed on other
programs attempting to OPEN the file after your program did. This is the default sharing mode.

NO OTHER When your program opens a file in this manner, your program announces that it is unwilling to
allow any other program to have any access to the file as long as you are using that file; OPEN
attempts made in other programs will fail with a file status of 37 (“PERMISSION DENIED”) until
such time as you CLOSE the file.

READ ONLY Opening a file in this manner indicates you are willing to allow other programs to OPEN the file
for INPUT while you have it OPEN. If they attempt any other OPEN, their OPEN will fail with a
file status of 37.

Of course, your program may fail if someone else got to the file first and OPENed it with a sharing option that imposed
file-sharing limitations.

See Also...
FILE-STATUS Values Figure The CLOSE Statement 6.4.7
4-15 The OPEN Statement 6.4.29

6.1.11.2. Record Locking

Record-locking is supported by advanced file-management software that provides a single point-of-control for access to
files (usually ORGANIZATION INDEXED files). One such runtime package capable of doing this is the Berkely Database
(BDB) package — a package frequently used in GNU COBOL builds to support ORGANIZATION INDEXED files. The various
1/0 statements are capable of imposing limitations on the access — by other concurrently-executing programs — to the
file record they just accessed. These limitations are syntactically imposed by placing a lock on the record. Other
records in the file remain available, assuming that file-sharing limitations imposed at OPEN-time didn’t prevent access
to the entire file.

2 Windows has other means of providing equivalent functionality to “fcntl()”, but the BDB package was not coded to utilize them.

The use of other advanced file I/O packages that support both the UNIX and Windows concurrent-access routines (such as
VBISAM) are currently under review by the author.

2 Apple Computer’s OSX operating system is based on an open-source version of UNIX (Darwin) and therefore includes support for

“fentl()”.

11FEB2012 Version 6-14

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

Locks remain in-effect until a program holding the lock terminates or issues a CLOSE or UNLOCK against the file or
executes a COMMIT or ROLLBACK statement.

The record locking options (not all options are available to all statements) are as shown in the following table.

Record

Locking
Option

WITH LOCK Access to the record by other programs will be denied.

WITH KEPT Normally, as a new record is accessed locks held for previous records are released. By using this

LOCK option, not only is the newly-accessed record locked (as WITH LOCK would do), but prior record locks
will be retained as well. A subsequent READ without the KEPT LOCK option will release all “kept” locks,
as will the FREE statement.

WITH NO The record will not be locked. This is the default locking option in effect for all statements.

LOCK

IGNORING This option is possible only when reading records — it informs GNU COBOL that any locks held by other

LOCK programs should be ignored.

WITH The two options shown are synonymous.

IGNORE LOCK

WITH WAIT This option is possible only when reading records — it informs GNU COBOL that the program is willing

to wait for a lock held on the record being read to be released.

Without this option, an attempt to read a locked record will be immediately aborted and a file status of
47 will be returned.

With this option, the program will wait for a pre-configured time for the lock to be released. If the lock
is released within the preconfigured wait time, the read will be successful. If the pre-configured wait
time expires before the lock is released, the read attempt will be aborted and a 47 file status will be
issued.

If the GNU COBOL build you are using was configured to use the Berkely Database (BDB) package for INDEXED file I/O,
record locking will be available by using the execution-time environment variable DB_HOME.

See Also...
FILE-STATUS Values Figure The FREE Statement 6.4.17
4-15 The ROLLBACK Statement ~ 6.4.37
The CLOSE Statement 6.4.7 The UNLOCK Statement 6.4.48
The COMMIT Statement 6.4.8 Execution-time Environment Variables 8.2.4

6.1.12. Common Clauses On Executable Statements

6.1.12.1. AT END / NOT AT END

AT END clauses may be specified on READ and RETURN statements. [AT END

imperative statement-1]

[NOT AT END imperative statement-2]

1. The optional AT END clause will —if present on a READ or RETURN statement — cause imperative-statement-1 to be
executed if the READ or RETURN attempt fails due to a File-Status of 10 (end-of-file).

2. An AT END clause WILL NOT DETECT OTHER NON-ZERO FILE-STATUS VALUES. See Figure 4-15 for a list of possible
File-Status values.

3. Use a DECLARATIVES routine (section) or an explicitly-declared file status field tested after the READ or RETURN to
detect error conditions other than end-of-file.

4. An optional NOT AT END clause will cause imperative-statement-2 to be executed if the READ or RETURN attempt
is successful.

11FEB2012 Version 6-15

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

5. SeeAlso...
Using DECLARATIVES 6.1.4 The RETURN Statement 6.2.35 ‘

The READ Statement 6.4.31

6.1.12.2. CORRESPONDING Option

Three GNU COBOL verbs — ADD (section 6.4.2.3), MOVE (section 6.4.26.2) and SUBTRACT (section 6.4.44.3) support the
use of a “CORRESPONDING” option that allows multiple data items within one group item (group-item-1 — the first
named on the statement) to be paired with multiple corresponding data items (hence the name) in a second group item
(group-item-2 — the second named on the statement). The contents of group-item-1 will remain unaffected by the
statement while one or more data items within group-item-2 will be changed.

In order for data-item-1, defined subordinate to group item group-item-1 to be a “CORRESPONDING” match to data-
item-2 which is subordinate to group-item-2, each of the following must be true:

1. Both data-item-1 and data-item-2 must have the same name, and that name may not explicitly or implicitly be
FILLER.

2. Both data-item-1 and data-item-2...

a. ..Mmust exist at the same relative structural “depth” of definition within group-item-1 and group-item-2,
respectively

b. ..and all “parent” data items defined within each group item must have identical (but non-“FILLER”) names.
3. When used with a MOVE verb...

a. ..one of data-item-1 or data-item-2 (but not both) is allowed to be a group item

b. ..and it must be valid to MOVE data-item-1 TO data-item-2.

4. When used with ADD or SUBTRACT verbs, both data-item-1 and data-item-2 must be numeric, elementary,
unedited items. Stated in different terms, neither data-item-1 nor data-item-2 may be group, alphabetic,
alphanumeric or numeric-edited items.

5. Neither data item-1 nor data-item-2 may be a REDEFINES or RENAMES of another data item.

6. Neither data item-1 nor data-item-2 may have an OCCURS clause. Either may contain subordinate data items that
have an OCCURS clause, however (assuming rule 3a applies)

Observe the following two group item structures...

@3 X. e1 v.
05 A PIC 9(1). 02 A PIC X(1).
05 G1. 02 G1.
10 G2. 03 G2.
15 B PIC X(1). 04 B PIC X(1).
o5 C. 02 C PIC X(1).
10 FILLER PIC X(1). 02 G3.
05 G3. 03 G5.
10 G4. 04 D PIC X(1).
15 D PIC X(1). 03 G6 PIC X(1).
05 E PIC X(1). 02 E PIC 9(1).
o5 F REDEFINES V1 PIC X(1). 02 F PIC X(1).
05 G. 02 G PIC X(4).
10 G6 OCCURS 4 TIMES PIC X(1). 02 H OCCURS 4 TIMES PIC X(1).
05 H PIC X(4). 66 I RENAMES E.
05 I PIC 9(1). 02 1.
o5 1. 03 K.
10 K. 04 L.
15 M PIC X(1). o5 M.

The following are the valid CORRESPONDING matches, assuming the statement MOVE CORRESPONDING XTO Y is
being used (there are no valid CORRESPONDING matches for ADD CORRESPONDING or SUBTRACT CORRESPONDING
because every potential matchup violates rule #4): A, B, C, G

The following are the “CORRESPONDING” matchups that failed, and the reasons why they failed.

11FEB2012 Version 6-16

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

D Fails dueto rule #2b G3 Fails due to rule #3a I Failsduetorule #5
E Failsduetorule #3b G4 Fails due to rule #1 J Failsduetorule #3a
F Fails due to rule #5 G5 Fails due to rule #1 K Fails due to rule #3a
G1 Fails due to rule #3a G6 Fails due to rule #6 L Fails due to rule #1
G2 Fails due to rule #3a H Fails due to rule #6 M Fails due to rule #2a
See Also...
The ADD CORRESPONDING Statement 4 The SUBTRACT CORRESPONDING 6.2.44.3
The MOVE CORRESPONDING Statement 6.2.26.2 Statement
6.1.12.3. INVALID KEY / NOT INVALID KEY
INVALID KEY clauses may be specified on DELETE, [ON INVALID KEY imperative statement-1]
READ (Random), REWRITE, START and WRITE
statements. [NOT ON INVALID KEY imperative statement-2]

Specification of an INVALID KEY clause will allow your program to trap an I/O failure condition (with an 1/O error code in
the file’s FILE-STATUS field) that has occurred due to a record-not-found condition and handle it gracefully.

See Also...
Defining File Characteristics (SELECT) 4.2.1 The Random READ Statement 6.2.31.2
FILE-STATUS Values Figure The REWRITE Statement 6.4.36
4-15 The START Statement 6.2.41
The DELETE Statement 6.4.11 The WRITE Statement 6.4.50
6.1.12.4. ON EXCEPTION / NOT ON EXCEPTION
EXCEPTION clauses may be specified on ACCEPT, CALL [ON EXCEPTION ERROR imperative statement-1]

and DISPLAY statements.

[NOT ON EXCEPTION ERROR imperative statement-2]

Specification of an ON EXCEPTION clause will allow your program to trap the failure condition that has occurred and
handle it gracefully. If such a condition occurs at runtime without having one of these clauses specified, an error
message will be generated (by the GNU COBOL runtime library) to the SYSERR device (pipe 2). The program may also
be terminated, depending upon the type and severity of the error.

See Also...
The ACCEPT Statement (Command Line) 6.2.1.2 The DISPLAY Statement (Command Line) 6.2.12.2
The ACCEPT Statement (Screen Data) 6.4.1.4 The DISPLAY Statement (Environment) 6.2.12.3
The CALL Statement 6.4.5 The DISPLAY Statement (Screen Data) 6.4.12.4
The DISPLAY Statement (Console/Stdout) 6.2.12.1

6.1.12.5. ON OVERFLOW / NOT ON OVERFLOW

OVERFLOW clauses may be specified on CALL, STRING [ON OVERFLOW ERROR imperative statement-1]
and UNSTRING statements.

[NOT ON OVERFLOW ERROR imperative statement-2]

Specification of an ON OVERFLOW clause will allow your program to trap the failure condition that has occurred and
handle it gracefully. If such a condition occurs at runtime without having one of these clauses specified, an error
message will be generated (by the GNU COBOL runtime library) to the SYSERR device (pipe 2). The program may also be
terminated, depending upon the type and severity of the error.

11FEB2012 Version 6-17

GNU COBOL 2.0 Programmers Guide

PROCEDURE DIVISION

See Also...

The CALL Statement 6.4.5

The UNSTRING Statement 6.2.49 ‘

The STRING Statement 6.2.43

6.1.12.6. ON SIZE ERROR / NOT ON SIZE ERROR

SIZE ERROR clauses may be included on ADD, COMPUTE,
DIVIDE, MULTIPLY and SUBTRACT statements.

[ON SIZE ERROR

imperative statement-1]

[NOT ON SIZE ERROR imperative statement-2]

Specification of an ON SIZE ERROR clause will allow your program to trap the failure condition that has occurred and
handle it gracefully. Field size overflow conditions occur silently, usually without any runtime messages being
generated, even though such events rarely lend themselves to generating correct results. Division by zero errors, when
no ON SIZE ERROR clause exists, will produce an error message (by the GNU COBOL runtime library) to the SYSERR

device (pipe 2) and will also abort the program.

See Also...

The ADD Statement 6.4.2

The MULTIPLY Statement 6.4.27

The COMPUTE Statement 6.4.9

The SUBTRACT Statement 6.4.44

The DIVIDE Statement 6.4.13

6.1.12.7. Rounding Options

GNU COBOL provides for control over the final
rounding process applied to the receiving fields
on all arithmetic verbs. Each of the arithmetic
statements (ADD, COMPUTE, DIVIDE,
MULTIPLY and SUBTRACT) statements provide

an optional ROUNDED clause to each receiving ROUNDED | MODE IS

data item. The syntax of this clause is shown to
the right.

The following rules apply to the rounding
behavior induced by this clause.

AWAY -FROM-ZERO
NEAREST -AWAY - FROM-ZERO
NEAREST -EVEN

| NEAREST -TOWARD-ZERO
- PROHIBITED
TOWARD-GREATER
TOWARD-LESSER
TRUNCATION

1. Rounding only applies when the result being saved to the receiving field having a ROUNDED clause is a non-integer

value

2. Absence of a ROUNDED clause is the same as specifying ROUNDED MODE IS TRUNCATION.

3. Use of a ROUNDED clause without a MODE specification is the same as specifying ROUNDED MODE IS NEAREST-

AWAY-FROM-ZERO.

4. The behavior of the eight different rounding modes is defined in the following table.

11FEB2012 Version

6-18

GNU COBOL 2.0 Programmers Guide

PROCEDURE DIVISION

Figure 6-18 - ROUNDED MODE Behavior

Examples assume an integer receiving field — An ellipsis (...) indicates the last result value digit repeats

AWAY-FROM- Rounding is to the nearest value of larger Becomes Becomes
ZERO magnitude. +2.499... +3 -3.499... -4
-2.499... -3 +3.500 +4
+2.500 +3 -3.500 -4
-2.500 -3 3.510 +4
+3.499... +4 -3.510 -4
NEAREST- Rounding is to the nearest value (larger or smaller). Result Becomes Result \ Becomes
AWAY-FROM- If two values are equally near, the value with the +2.499... +2 -3.499... -3
ZERO larger absolute value is selected. -2.499... -2 +3.500 +4
+2.500 +3 -3.500 -4
-2.500 -3 3.510 +4
+3.499... +3 -3.510 -4
NEAREST-EVEN | Rounding is to the nearest value (larger or smaller). Result Becomes Result Becomes
If two values are equally near, the value whose +2.499... +2 -3.499... -3
rightmost digit is even is selected. This mode is -2.499... -2 +3.500 +4
sometimes called "Banker's rounding". +2.500 +2 -3.500 -4
-2.500 -2 3.510 +4
+3.499... +3 -3.510 -4
NEAREST- Rounding is to the nearest value (larger or smaller). Result Becomes Result \ Becomes
TOWARD-ZERO | If two values are equally near, the value with the +2.499... +2 -3.499... -3
smaller absolute value is selected. -2.499... -2 +3.500 +3
+2.500 +2 -3.500 -3
-2.500 -2 3.510 +4
+3.499... +3 -3.510 -4
PROHIBITED No rounding is performed. If the value cannot be Result Becomes Result ‘ Becomes
represented exactly in the desired format, the EC- +2.499... -3.499...
SIZE-TRUNCATION condition (exception code 1005) -2.499... +3.500
is set to exist (and may be retrieved via the ACCEPT +2.500 Undefined -3.500 Undefined
statement)and the results of the operation are -2.500 +3.510
undefined. +3.499... -3.510
TOWARD- Rounding is toward the nearest value whose Result Becomes Result \ Becomes
GREATER algebraic value is larger. +2.499... +3 -3.499... -3
-2.499... -2 +3.500 +4
+2.500 +3 -3.500 -3
-2.500 -2 3.510 +4
+3.499... +4 -3.510 -3
TOWARD- Rounding is toward the nearest value whose Result Becomes Result \ Becomes
LESSER algebraic value is smaller. +2.499... +2 -3.499... -4
-2.499... -3 +3.500 +3
+2.500 +2 -3.500 -4
-2.500 -3 3.510 +3
+3.499... +3 -3.510 -4
TRUNCATION Rounding is to the nearest value whose magnitude Result Becomes Result ‘ Becomes
is smaller. +2.499... +2 -3.499... -3
-2.499... -2 +3.500 +3
+2.500 +2 -3.500 -3
-2.500 -2 3.510 +3
+3.499... +3 -3.510 -3
See Also...
The ACCEPT Statement (Run-time Info) 6.2.1.7 The DIVIDE Statement 6.4.13
The ADD Statement 6.4.2 The MULTIPLY Statement 6.4.27
The COMPUTE Statement 6.4.9 The SUBTRACT Statement 6.4.44

6.1.13. Special Registers

11FEB2012 Version

6-19

GNU COBOL 2.0 Programmers Guide

PROCEDURE DIVISION

GNU COBOL, like other COBOL dialects, includes a number of data items that are automatically available to a
programmer without the need to actually define them in the DATA DIVISION. COBOL refers to such items as registers
or special registers. The special registers available to a GNU COBOL program are as follows:

Figure 6-19 - Special Registers

Register Name Implied COBOL Usage
PIC/USAGE”
COB-CRT-STATUS PIC9(4) This is the default data item allocated for use by format 4 of
the ACCEPT statement.
DEBUG-ITEM PIC X(88) A group item in which debugging information generated by a
Subordinate items: (group item) USE FOR DEBUGGING section in the DECLARATIVES area will
DEBUG-LINE place information documenting why the USE FOR
DEBUG-NAME DEBUGGING procedure was invoked.
DEBUG-SUB-1
DEBUG-SUB-2
DEBUG-SUB-3

DEBUG-CONTENTS

LINAGE-COUNTER

BINARY-LONG
SIGNED

An occurrence of this register exists for each SELECTed file
having a LINAGE clause. If there are multiple files whose FDs
have a LINAGE clause, any explicit references to this register
will require qualification (using “OF file-name”).

The value of this register will be the current logical line
number within the page body.

DO NOT MODIFY THE CONTENTS OF THIS REGISTER.

NUMBER-OF-CALL-
PARAMETERS

BINARY-LONG
SIGNED

This register contains the number of arguments passed to a
subroutine — the same value that would be returned by the
CSNARG built-in subroutine. Its value will be zero when
referenced in a main program. This register, when
referenced from within a user-defined function, returns a
value of one (1) if the function has any number of arguments
and a zero if it has no arguments.

RETURN-CODE

BINARY-LONG
SIGNED

This register provides a numeric data item into which a
subroutine may MOVE a value prior to transferring control
back to the program that CALLed it, or into which a main
program may MOVE a value before returning control to the
operating system.

Many built-in subroutines will return a value using this
register.

These values are — by convention — used to signify success
(usually with a value of 0) or failure (usually with a non-zero
value) of the process the program setting the RETURN-CODE
value was attempting to perform.

Chapter 0 discusses the role this special register plays with
subprograms.

SORT-RETURN

BINARY-LONG
SIGNED

This register is used to report the success/fail status of a
RELEASE or RETURN statement. A value of O is reported on
success. A value of 16 denotes failure. An “AT END”
condition on a RETURN is not considered a failure.

WHEN-COMPILED

PIC X(16)

This register contains the date and time the program was
compiled in the format “mm/dd/yyhh.mm.ss”. Note that
only a two-digit year is provided.

23

11FEB2012 Version

See sections 5.2.1.6 and 5.2.1.11 for a description of the PICTURE and USAGE specifications, respectively

6-20

GNU COBOL 2.0 Programmers Guide

PROCEDURE DIVISION

See Also...
Describing the Structure of a File (FD/SD) 5.1 The RELEASE Statement 6.2.33
Using DECLARATIVES 6.1.4 The RETURN Statement 6.2.35
The ACCEPT Statement (Screen Data) 6.4.1.4 The CSNARG Subroutine 8.3.1.9

6.1.14. Intrinsic Functions

GNU COBOL supports a variety of “intrinsic functions” that may be used anywhere in the PROCEDURE DIVISION where
a literal is allowed. For example:

MOVE FUNCTION LENGTH(Employee-Last-Name) TO Employee-LN-Len.

Note how the word “FUNCTION” is part of the syntax when you use an intrinsic function. You can use intrinsic functions
without having to include the reserved word FUNCTION via settings in the REPOSITORY paragraph of the
CONFIGURATION SECTION. You may accomplish the same thing my specifying the “~fintrinsics” option to the GNU
COBOL compiler when you compile your programs.

The following intrinsic functions, known to other “dialects” of COBOL, are defined to GNU COBOL as reserved words but
are not otherwise implemented currently. Any attempts to use these functions will result in a compile-time error
message.

BOOLEAN-OF-INTEGER FORMATTED-CURRENT-DATE INTEGER-OF-FORMATTED-DATE

CHAR-NATIONAL FORMATTED-DATE NATIONAL-OF

DISPLAY-OF FORMATTED-DATETIME STANDARD-COMPARE

EXCEPTION-FILE-N FORMATTED-TIME TEST-FORMATTED-DATETIME

EXCEPTION-LOCATION-N INTEGER-OF-BOOLEAN
The supported intrinsic functions are listed in the following sections, along with their syntax and usage notes.

See Also...

The REPOSITORY Paragraph 4.1.3 Compiler Switches Reference 8.1.2

6.1.14.1. ABS(number)

Determines and returns the absolute value of the number (a numeric literal or data item) supplied as an argument.

6.1.14.2. ACOS(cosine)

The ACOS function determines and returns the trigonometric arc-cosine, or inverse cosine, of the cosine value (a
numeric literal or data item) supplied as an argument.

6.1.14.3. ANNUITY (interest-rate, number-of-periods)

This function returns a numeric value approximating the ratio of an annuity paid at the specified interest-rate (numeric
data items or literals) for each of the specified number-of-periods (numeric data items or literals).

The interest-rate is the rate of interest paid at each payment. If you only have an annual interest rate and you wish to
compute annuity payments for monthly payments, divide the annual interest rate by 12 and use that value for interest-
rate on this function.

Multiply this result times the desired principal amount to determine the amount of each period’s payment.

A note for the financially challenged: an annuity is basically a reverse loan; an accountant would take the result of this
function multiplied by -1 to compute a loan payment you are making.

11FEB2012 Version 6-21

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

6.1.14.4. ASIN(sine)

The ASIN function determines and returns the trigonometric arc-sine, or inverse sine, of the sine value (a numeric literal
or data item) supplied as an argument.

6.1.14.5. ATAN(tangent)

Use this function to determine and return the trigonometric arc-tangent, or inverse tangent, of the tangent value (a
numeric literal or data item) supplied as an argument.

6.1.14.6. BYTE-LENGTH(string)

BYTE-LENGTH returns the length — in bytes — of the specified string (a group item, USAGE DISPLAY elementary item or
alphanumeric literal). This intrinsic function is identical to the LENGTH-AN function. Note that the value returned by
this function is not necessarily the number of characters making up the string, but rather the number of actual bytes
required to store string.

For example, if string is encoded using a double-byte characterset such as UNICODE (where each character is
represented by 16 bits of storage, not the 8-bits inherent to charactersets like ASCII or EBCDIC), then calling this
function with a string argument whose PICTURE is X(4) would return a value of 8 rather than the value 4.

6.1.14.7. CHAR(integer)

This function returns the character in the ordinal position specified by the integer argument (a numeric integer literal or
data item) from the collating sequence being used by the program.

For example, if the program is using the (default) ASCII characterset, CHAR(34) returns the 34" character in the ASCII
characterset — an exclamation-point (“!”). If you are using this function to convert a numeric value to its corresponding
ASCII character, you must use an argument value one greater than the numeric value.

If an argument whose value is less than 1 or greater than 256 is specified, the character in the program collating
sequence corresponding to a value of all zero bits is returned.

The following code is an alternative approach when you just wish to convert a number to its ASCII equivalent:

01 Char-Value.
05 Numeric-Value USAGE BINARY-CHAR.

MOVE numeric-character-value TO Numeric-Value
The Char-Value item now has the corresponding ASCII character value

6.1.14.8. COMBINED-DATETIME(days, seconds)

This function returns a 12-digit result, the first seven digits of which are the integer value of the days argument (a
numeric data item or literal) and the last five of which are the integer value of the seconds argument (also a numeric
data item or literal).

If a days value less than 1 or greater than 3067671 is specified, or if a seconds value less than 1 or greater than 86400 is
specified, a value of 0 is returned and a runtime error will result.

6.1.14.9. CONCATENATE(string-1 |, string-2] ...)

This function concatenates the string-1, string-2, ... (group items, USAGE DISPLAY elementary items and/or
alphanumeric literals) together into a single string result.

11FEB2012 Version 6-22

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

If a numeric literal or PIC 9 identifier is specified as an argument, decimal points, if any, will be removed and negative
signs in PIC S9 fields or numeric literals will be inserted as defined by the SIGN clause (or absence thereof) of the field.
Numeric literals are processed as if SIGN IS TRAILING SEPARATE were in effect.

See Also...
‘ Defining Signed Data Items (SIGN) 5.2.1.9

6.1.14.10. COS(angle)

The COS function determines and returns the trigonometric cosine of the angle (a numeric literal or data item) supplied
as an argument. The angle is assumed to be a value expressed in radians.

6.1.14.11. CURRENCY-SYMBOL

The CURRENCY-SYMBOL function returns the currency symbol character currently in effect for the locale under which
your program is running. On UNIX systems, your locale is established via the LANG environment variable. On Windows,
the Control Panel’s Regional and Language Options define the locale.

Changing the currency symbol via the SPECIAL-NAMES paragraph’s CURRENCY SYMBOL setting will not affect the value
returned by this function.

See Also...

‘ The SPECIAL-NAMES Paragraph 4.1.4

6.1.14.12. CURRENT-DATE

Returns the current date and time as the following 21-character structure:

01 CURRENT-DATE-AND-TIME.

05 CDT-Year PIC 9(4).

05 CDT-Month PIC 9(2). *> 01-12
05 CDT-Day PIC 9(2). *> 01-31
05 CDT-Hour PIC 9(2). *> 00-23
05 CDT-Minutes PIC 9(2). *> 00-59
05 CDT-Seconds PIC 9(2). *> 00-59
05 CDT-Hundredths-0f-Secs PIC 9(2). *> 00-99
05 CDT-GMT-Diff-Hours PIC S9(2)

SIGN LEADING SEPARATE.
05 CDT-GMT-Diff-Minutes PIC 9(2). *> 00 or 30

Since the CURRENT-DATE function has no arguments, no parenthesis should be specified.

6.1.14.13. DATE-OF-INTEGER(integer)

This function returns a calendar date in yyyymmdd format. The date is determined by adding the number of days
specified as integer (a numeric integer data item or literal) to December 31, 1600. For example, DATE-OF-INTEGER(1)
returns 16010101.

A value less than 1 or greater than 3067671 (9999/12/31) will return a result of 0.

6.1.14.14. DATE-TO-YYYYMMDD (yymmdd [, yy-cutoff])

You can use this function to convert the six-digit date specified as yymmdd (a numeric integer data item or literal) to an
eight-digit format (yyyymmdd). The optional yy-cutoff (a numeric integer data item or literal) argument is the year
cutoff used to delineate centuries; if the year component of the date meets or exceeds this cutoff value, the result will
be 19yymmdd; if the year component of the date is less than the cutoff value, the result will be 20yymmdd. The default
cutoff value if no second argument is given will be 50.

6.1.14.15. DAY-OF-INTEGER (integer)

11FEB2012 Version 6-23

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

This function returns a calendar date in yyyyddd (i.e. Julian) format. The date is determined by adding the number of
days specified as integer (a numeric integer data item or literal) to December 31, 1600. For example, DATE-OF-
INTEGER(1) returns 1601001.

A value less than 1 or greater than 3067671 (9999/12/31) will return a result of 0.

6.1.14.16. DAY-TO-YYYYDDD(yyddd [, yy-cutoff])

You can use this function to convert the five-digit Julian date specified as yyddd (a numeric integer data item or literal)

to a seven-digit Julian format (yyyyddd). The optional yy-cutoff argument (a numeric integer data item or literal) is the

year cutoff used to delineate centuries; if the year component of the date meets or exceeds this cutoff value, the result
will be 19yyddd; if the year component of the date is less than the cutoff, the result will be 20yyddd. The default cutoff
value if no second argument is given will be 50.

6.1.14.17. E

This function returns the mathematical constant “E” (the base of natural logarithms). The maximum precision with
which this value may be returned is 2.7182818284590452353602874713526625.

Since the E function has no arguments, no parenthesis should be specified.

6.1.14.18. EXCEPTION-FILE

This function returns I/O exception information from the most-recently executed input or output statement. The
information is returned to a structure resembling the following:

01 INPUT-OUTPUT-EXCEPTION.
05 IOE-FILE-STATUS PIC 9(2).
05 IOE-FILE-SELECT-NAME PIC X(32).
See Figure 4-15 for information about possible file-status values.

The name returned after the file status information will be the “SELECT” name of the file, and it will be returned only if
the returned file status value is not 00.

Since the EXCEPTION-FILE function has no arguments, no parenthesis should be specified.
The documentation of the CBL_ERROR_PROC built-in subroutine illustrates the use of this function.

See Also...
| The CBL_ERROR_PROC Subroutine 8.3.1.24 |

6.1.14.19. EXCEPTION-LOCATION

This function returns exception information from the most-recently failing statement. The information is returned to a
1023 character string in one of the following formats, depending on the nature of the failure:

» primary-entry-point-name; paragraph OF section; statement-number
» primary-entry-point-name; section; statement-number

» primary-entry-point-name; paragraph; statement-number

» primary-entry-point-name; statement-number

Since the EXCEPTION-LOCATION function has no arguments, no parenthesis should be specified.

The program must be compiled with the “-debug” , “-ftraceall” or “-g” option for this function to return any
meaningful information.

The documentation of the CBL_ERROR_PROC built-in subroutine illustrates the use of this function.

11FEB2012 Version 6-24

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

See Also...
| The CBL_ERROR_PROC Subroutine 8.3.1.24 |

6.1.14.20. EXCEPTION-STATEMENT

This function returns the most-recent COBOL statement that generated an exception condition.
Since the EXCEPTION-STATEMENT function has no arguments, no parenthesis should be specified.

»nou

The program must be compiled with the “-debug” , “-ftraceall” or “-g” option for this function to return any
meaningful information.

The documentation of the CBL_ERROR_PROC built-in subroutine illustrates the use of this function.

See Also...
| The CBL_ERROR_PROC Subroutine 8.3.1.24 |

6.1.14.21. EXCEPTION-STATUS

This function returns the error type (as a text string) from the most-recent COBOL statement that generated an
exception condition. Figure 6-28 shows a list of possible error types.

Since the EXCEPTION-STATUS function has no arguments, no parenthesis should be specified.
The documentation of the CBL_ERROR_PROC built-in subroutine illustrates the use of this function.

See Also...
‘ The CBL_ERROR_PROC Subroutine 8.3.1.24

6.1.14.22. EXP(number)

Computes and returns the value of the mathematical constant “e” raised to the power specified by number (a numeric
literal or data item).

6.1.14.23. EXP10(number)

Computes and returns the value of 10 raised to the power specified by number (a numeric literal or data item).

6.1.14.24. FACTORIAL(number)

This function computes and returns the factorial value of number (a numeric literal or data item).

6.1.14.25. FRACTION-PART (number)

This function returns that portion of number that occurs to the right of the decimal point. Number must be a numeric
data item or a numeric literal. FRACTION-PART(3.1415), for example, returns a value of 0.1415. This function is
equivalent to the expression:

number — FUNCTION INTEGER-PART(number)

6.1.14.26. HIGHEST-ALGEBRAIC(numeric-identifier)

This function returns the highest (i.e. largest or farthest away from 0 in a positive direction if numeric-identifier is
signed) value that could possibly be stored in the specified numeric-identifier.

6.1.14.27. INTEGER(number)

11FEB2012 Version 6-25

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

The INTEGER function returns the greatest integer value that is less than or equal to number (a numeric literal or data
item).

6.1.14.28. INTEGER-OF-DATE(date)

This function converts date (a numeric integer data item or literal) — presumed to be a Gregorian calendar form
standard date (YYYYMMDD) - to integer date form —that is, the number of days that have transpired since 1600/12/31.

6.1.14.29. INTEGER-OF-DAY(date)

This function converts date (a numeric integer data item or literal) — presumed to be a Julian calendar form standard
date (YYYYDDD) to integer date form — that is, the number of days that have transpired since 1600/12/31.

6.1.14.30. INTEGER-PART (number)

Returns the integer portion of the value of number (a numeric literal or data item).

6.1.14.31. LENGTH(string)

Returns the length —in characters — of string (a group item, USAGE DISPLAY elementary item or alphanumeric literal).
Note that the value returned by this function is not the number of bytes of storage occupied by string, but rather the
number of actual characters making up the string. For example, if string is encoded using a double-byte characterset
such as UNICODE (where each character is represented by 16 bits of storage, not the 8-bits inherent to charactersets
like ASCIl or EBCDIC), then calling this function with a string argument whose PICTURE is X(4) would return a value of 4
rather than the value 8 (the actual number of bytes of storage occupied by that item).

6.1.14.32. LENGTH-AN(string)

Returns the length —in bytes of storage — of string (a group item, USAGE DISPLAY elementary item or alphanumeric
literal). This intrinsic function is identical to the BYTE-LENGTH function. Note that the value returned by this function is
not the number of actual characters making up the string, bytes of storage occupied by string, but rather the number of
actual bytes required to store string. For example, if string is encoded using a double-byte characterset such as
UNICODE (where each character is represented by 16 bits of storage, not the 8-bits inherent to charactersets like ASCII
or EBCDIC), then calling this function with a string argument whose PICTURE is X(4) would return a value of 8 rather
than the value 4.

6.1.14.33. LOCALE-COMPARE(argument-1, argument-2 [, locale])

The LOCALE-COMPARE function returns a character indicating the result of comparing argument-1 and argument-2
using a culturally-preferred ordering defined by a locale.

Either argument may be an alphanumeric literal, a group item or an elementary item appropriate to storing alphabetic
or alphanumeric data. If the lengths of the two arguments are unequal, the shorter will be assumed to be padded to
the right with SPACES.

The two arguments will be compared, character by character, against each other until their relationship to each other
can be determined. The comparison is made according to the cultural rules in effect for the specified locale name or for
the current locale if no locale argument is specified24. Once that relationship is determined, a one-character
alphanumeric value will be returned as follows:

“u_n

< If argument-1 is determined to be less than argument-2
“= If the two arguments are equal to each other
“ If argument-1 is determined to be greater than argument-2

24 - . .
Locale-based ordering is not necessarily a character-by-character comparison.

11FEB2012 Version 6-26

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

6.1.14.34. LOCALE-DATE(date |, locale])

Converts the eight-digit Gregorian date (a numeric integer data item or literal) from YYYYMMDD format to the format
appropriate to the current locale. On a Windows system, this will be the “short date” format as set using Control Panel.

You may include an optional second argument to specify the locale name (group item or PIC X identifier) you’d like to
use for date formatting. If used, this second argument MUST be an identifier. Locale names are specified using UNIX-
standard names. The complete list of supported locale names is shown in Figure 4-7.

6.1.14.35. LOCALE-TIME(time [, locale])

Converts the four- (HHMM) or six-digit (HHMMSS) time (a numeric integer data item or literal) to a format appropriate
to the current locale. On a Windows system, this will be the “time” format as set using Control Panel.

You may include an optional locale name (a group item or PIC X identifier) you’d like to use for time formatting. If used,
this second argument MUST be an identifier. Locale names are specified using UNIX-standard names. The complete list
of supported locale names is shown in Figure 4-7.

6.1.14.36. LOCALE-TIME-FROM-SECS(seconds |, locale])

Converts the number of seconds since midnight (a numeric integer data item or literal) to a format appropriate to the
current locale. On a Windows system, this will be the “time” format as set using Control Panel.

You may include an optional locale name (a group item or PIC X identifier) you’d like to use for time formatting. If used,
this second argument MUST be an identifier. Locale names are specified using UNIX-standard names. The complete list
of supported locale names is shown in Figure 4-7.

6.1.14.37. LOG(number)

Computes and returns the natural logarithm (base “e”) of number (a numeric literal or data item).

6.1.14.38. LOG10(number)

Computes and returns the base 10 logarithm of number (a numeric literal or data item).

6.1.14.39. LOWER-CASE(string)

This function returns the value of string (a group item, USAGE DISPLAY elementary item or alphanumeric literal),
converted entirely to lower case. Note that what constitutes a “letter” (or upper/lower case too, for that manner) may
be influenced through the use of a CHARACTER CLASSIFICATION specification in the OBJECT-COMPUTER paragraph..

See Also...
‘ The OBJECT-COMPUTER Paragraph 4.1.2 ‘

6.1.14.40. LOWEST-ALGEBRAIC(numeric-identifier)

This function returns the lowest (i.e. smallest or farthest away from 0 in a negative direction if numeric-identifier is
signed) value that could possibly be stored in the specified numeric-identifier.

6.1.14.41. MAX(number-1 [, number-2] ...)

This function returns the maximum value from the specified list numbers (these may be numeric data items or literals).

6.1.14.42. MEAN(number-1 [, number-2] ...

11FEB2012 Version 6-27

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

This function returns the statistical mean value of the specified list numbers (these may be numeric data items or
literals).

6.1.14.43. MEDIAN(number-1 [, number-2] ...)

This function returns the statistical median value of the specified list numbers (these may be numeric data items or
literals).

6.1.14.44. MIDRANGE(number-1 [, number-21] ...)

The MIDRANGE (middle range) function returns a numeric value that is the arithmetic mean (average) of the values of
the minimum and maximum numbers (these may be numeric data items or literals).

6.1.14.45. MIN(number-1 [, number-2 | ...)

This function returns the minimum value from the specified list numbers (these may be numeric data items or literals).

6.1.14.46. MOD(value, modulus)

Returns value modulo modulus. Both arguments may be PIC 9 data items or numeric literals. Either (or both) may have
a non-integer value.

The result is determined according to the following formula:

value - (modulus * FUNCTION INTEGER (value / modulus))

6.1.14.47. MODULE-CALLER-ID

Returns the primary entry-point name (section 3) of the GNU COBOL program that CALLed this one, or the null string if
the program is a main program.

The discussion of the MODULE-TIME function includes a sample program that also uses this function.

See Also...
‘ The MODULE-TIME Intrinsic Function 6.1.14.53

6.1.14.48. MODULE-DATE

Returns the date the GNU COBOL program was compiled, in the form YYYYMMDD.
The discussion of the MODULE-TIME function includes a sample program that also uses this function.

See Also...
‘ The MODULE-TIME Intrinsic Function 6.1.14.53 ‘

6.1.14.49. MODULE-FORMATTED-DATE

Returns the fully-formatted date and time when the program was compiled. The exact format of this returned string
value may vary depending on the operating system, GNU COBOL build type and/or LOCALE settings.

The discussion of the MODULE-TIME function includes a sample program that also uses this function.

See Also...
‘ The MODULE-TIME Intrinsic Function 6.1.14.53

6.1.14.50. MODULE-ID

11FEB2012 Version 6-28

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

Returns the primary entry-point name (section 3) of this GNU COBOL program.
The discussion of the MODULE-TIME function includes a sample program that also uses this function.

See Also...
‘ The MODULE-TIME Intrinsic Function 6.1.14.53

6.1.14.51. MODULE-PATH

This function returns the full path to the executable version of this GNU COBOL program. The filename component of
this value will be exactly as typed on the command line, down to the use of upper- and lowercase letters and presence
(or absence) of any extension.

The discussion of the MODULE-TIME function includes a sample program that also uses this function.

See Also...
The MODULE-TIME Intrinsic Function 6.1.14.53

6.1.14.52. MODULE-SOURCE

The filename of the source code of the program (as specified on the “cobc” command when the program was compiled)
is returned by this function.

The discussion of the MODULE-TIME function includes a sample program that also uses this function.

See Also...
The MODULE-TIME Intrinsic Function 6.1.14.53

6.1.14.53. MODULE-TIME

This function returns the time the GNU COBOL program was compiled, in the form HHMMSS.

The following sample main program uses all the MODULE- Functions

IDENTIFICATION DIVISION.
PROGRAM-ID. DEMOMODULE.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
REPOSITORY.
FUNCTION ALL INTRINSIC.
PROCEDURE DIVISION.
000-Main.
DISPLAY "MODULE-CALLER-ID
DISPLAY "MODULE-DATE
DISPLAY "MODULE-FORMATTED-DATE
DISPLAY "MODULE-ID
DISPLAY "MODULE-PATH
DISPLAY "MODULE-SOURCE
DISPLAY "MODULE-TIME
STOP RUN

[" MODULE-CALLER-ID "]"

[" MODULE-DATE "]"

[" MODULE-FORMATTED-DATE "]"
[" MODULE-ID "]"

[" MODULE-PATH "]"

[" MODULE-SOURCE "]1"

[" MODULE-TIME "]"

The program produces this output when executed:

MODULE-CALLER-ID =[]

MODULE-DATE = [20120614]
MODULE-FORMATTED-DATE = [Jun 14 2012 15:07:45]
MODULE-ID = [DEMOMODULE]

MODULE-PATH
MODULE -SOURCE
MODULE-TIME

[E:\Programs\Demos \DEMOMODULE . exe]
[DEMOMODULE . cb1]
[150745]

11FEB2012 Version 6-29

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

6.1.14.54. MONETARY-DECIMAL-POINT

This function returns the character used to separate the integer portion from the fractional part of a monetary currency
value according to the rules currently in effect for the locale under which your program is running. On UNIX systems,
your locale is established via the LANG environment variable. On Windows, the Control Panel’s Regional and Language
Options define the locale.

Note that using the SPECIAL-NAMES paragraph’s DECIMAL-POINT IS COMMA setting will not affect the value returned
by this function.

See Also...
‘ The SPECIAL-NAMES Paragraph 4.1.4 ‘

6.1.14.55. MONETARY-THOUSANDS-SEPARATOR

This function returns the character used to separate the thousands digit groupings of monetary currency values
according to the rules currently in effect for the locale under which your program is running. On UNIX systems, your
locale is established via the LANG environment variable. On Windows, the Control Panel’s Regional and Language
Options define the locale.

Note that using the SPECIAL-NAMES paragraph’s DECIMAL-POINT IS COMMA setting will not affect the value returned
by this function.

See Also...
‘ The SPECIAL-NAMES Paragraph 4.1.4 ‘

6.1.14.56. NUMERIC-DECIMAL-POINT

This function returns the character used to separate the integer portion of a non-integer numeric item from the
fractional part according to the rules currently in effect for the locale under which your program is running. On UNIX
systems, your locale is established via the LANG environment variable. On Windows, the Control Panel’s Regional and
Language Options define the locale.

Note that using the SPECIAL-NAMES paragraph’s DECIMAL-POINT IS COMMA setting will not affect the value returned
by this function.

See Also...
‘ The SPECIAL-NAMES Paragraph 4.1.4 ‘

6.1.14.57. NUMERIC-THOUSANDS-SEPARATOR

This function returns the character used to separate the thousands digit groupings of numeric values according to the
rules currently in effect for the locale under which your program is running. On UNIX systems, your locale is established
via the LANG environment variable. On Windows, the Control Panel’s Regional and Language Options define the locale.

Note that using the SPECIAL-NAMES paragraph’s DECIMAL-POINT IS COMMA setting will not affect the value returned
by this function.

See Also...

‘ The SPECIAL-NAMES Paragraph 4.1.4

6.1.14.58. NUMVAL(string)

11FEB2012 Version 6-30

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

The NUMVAL function converts a

Format 1: string (a group item, USAGE
[space...] H + H [space... 1[digit... 1[. [digit... 1]1[space...] DISPLAY elementary item or
) alphanumeric literal) to its
Format 2: + corresponding numeric value.

[space... 1[digit..][. [digit.. 1] space...] DB [space...]
CR

The string must have either of the formats shown here, where space represents a SPACE character and digit represents
one of the digit characters “0” through “9”. In addition, there must be at least one digit characters in the string.

If string does not conform to either of the formats shown here, a value of zero will be returned.

6.1.14.59. NUMVAL-C(string [, symbol])

Format 1:

[space...]H + H [space... 1[currency] [space..] [digit...][. [digit...]][space...]

Format 2:

[space... 1[currency][space...] [digit.. 1[. [digit.. 1]1[space...] DB [space...]

This function converts a string (a group item, USAGE DISPLAY elementary item or alphanumeric literal) representing a
currency value to its corresponding numeric value.

The string must have either of the formats shown here, where space represents a SPACE character, digit represents one
of the digit characters “0” through “9” and currency represents a currency symbol (a “$”, for example). In addition,
there must be at least one digit characters in the string.

The optional symbol character represents the currency symbol (a single-character group item, USAGE DISPLAY
elementary item or alphanumeric literal) that may be used as the currency character in string. If no symbol is specified,
the value that would be returned by the CURRENCY-SYMBOL intrinsic function will be used.

See Also...
The CURRENCY-SYMBOL Intrinsic Function 6.1.7.11

6.1.14.60. NUMVAL-F(string)

[space... 1 H + H[space...][digit.. 1[« [digit.. 11 E[space...] H + H digit... [space...]

This function converts a string (a group item, USAGE DISPLAY elementary item or alphanumeric literal) representing a
floating-point value to its corresponding numeric value.

The string must have the format shown here, where space represents a SPACE character and digit represents one of the
digit characters “0” through “9”. In addition, there must be at least one digit character in the string to the left of the “E”
character.

6.1.14.61. ORD(char)

11FEB2012 Version 6-31

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

This function returns the ordinal position in the program characterset (usually ASCIl) corresponding to the 1* character
of the char argument (a group item, USAGE DISPLAY elementary item or alphanumeric literal). For example, assuming
the program is using the standard ASCII collating sequence, ORD(“!”) returns 34 because “!” is the 34™ ASCII character.
If you are using this function to convert an ASCII character to its numeric value, you must subtract one from the result.

The following code is an alternative approach when you just wish to convert an ASCII character to its numeric
equivalent:

01 Char-Value.
05 Numeric-Value USAGE BINARY-CHAR.

MOVE “character” TO Char-Value
The Numeric-Value item now has the corresponding numeric value

6.1.14.62. ORD-MAX(char-1 [, char-2] ...)

This function returns the ordinal position in the argument list corresponding to the argument whose 1% character has
the highest position in the program collating sequence (usually ASCII). For example, assuming the program is using the
standard ASCII collating sequence, ORD-MAX(“Z”, “z", “1”) returns 2 because the ASCII character “z” occurs after “Z”
and “!” in the program collating sequence. Each char argument is a group item, USAGE DISPLAY elementary item or
alphanumeric literal

6.1.14.63. ORD-MIN(char-1 [, char-21] ...)

This function returns the ordinal position in the argument list corresponding to the argument whose 1% character has
the lowest position in the program collating sequence (usually ASCII). For example, assuming the program is using the
standard ASCII collating sequence, ORD-MIN(“Z”, “z", “1”) returns 3 because the ASCII character “!” occurs before “Z”
and “z” in the program’s collating sequence. Each char argument is a group item, USAGE DISPLAY elementary item or
alphanumeric literal

6.1.14.64. PI
This function returns the mathematical constant “PI”. The maximum precision with which this value may be returned is
3.1415926535897932384626433832795029.

Since the PI function has no arguments, no parenthesis should be specified.

6.1.14.65. PRESENT-VALUE(rate, value-1 [, value-2 1)

The PRESENT-VALUE function returns a value that approximates the present value of a series of future period-end
amounts specified by the various value arguments at a discount rate specified by the rate argument. All arguments are
PIC 9 items and/or numeric literals.

#_of values valuey

The following formula summarizes the functions operation: result = anl Lirate)

6.1.14.66. RANDOM [(seed) |

The RANDOM function returns a non-integer value in the range 0 to 1 (for example, 0.123456789).

If seed is specified, it must be zero or a positive integer (specified as a PIC 9 item and/or numeric literal). It is used as
the seed value to generate a sequence of pseudo-random numbers.

If a subsequent reference specifies seed, a new sequence of pseudo-random numbers is started.
If the first executed reference to this function does not specify a seed, the seed will be supplied by the compiler.

In each case, subsequent references without specifying a seed return the next number in the current sequence.

11FEB2012 Version 6-32

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

6.1.14.67. RANGE(number-1 [, number-2] ...)

The RANGE function returns a value that is equal to the value of the maximum number in the argument list minus the
value of the minimum number argument. All arguments are numeric data items and/or numeric literals.

6.1.14.68. REM(number, divisor)

This function returns a numeric value that is the remainder of number divided by divisor. Both arguments must be
numeric data items or numeric literals.

The result is determined according to the following formula:

number - (divisor ¥ FUNCTION INTEGER-PART (number / divisor))

6.1.14.69. REVERSE(string)

This function returns the byte-by-byte reversed value of the specified string (a group item, USAGE DISPLAY elementary
item or alphanumeric literal).

6.1.14.70. SECONDS-FROM-FORMATTED-TIME(format, time)

This function decodes a string whose value represents a formatted time and returns the total number of seconds that
string represents. The time string must contain hours, minutes and seconds. The time argument may be specified as a
group item, USAGE DISPLAY elementary item or an alphanumeric literal.

The format argument is a string (a group item, USAGE DISPLAY elementary item or an alphanumeric literal)
documenting the format of time using “hh”, “mm” and “ss” to denote where the respective time information can be
found. Any other characters found in format represent character positions that will be ignored. For example, a format
of “hhmmss” indicates that time will be treated as a six-digit value where the first two characters are the number of
hours, the next two represent minutes and the last two represent seconds. Similarly, a format of “hh:mm:ss” states
that time will be an eight-character string where characters 3 and 6 will be ignored.

6.1.14.71. SECONDS-PAST-MIDNIGHT

This function returns the current time of day expressed as the total number of elapsed seconds since midnight.

6.1.14.72. SIGN(number)

The SIGN function returns a -1 if the value of number (a numeric literal or data item) is negative, a zero if the value of
number is exactly zero and a 1 if the value of number if greater than 0.

6.1.14.73. SIN(angle)

Determines and returns the trigonometric sine of the specified angle (a numeric literal or data item). The angle is
assumed to be a value expressed in radians.

6.1.14.74. SQRT(number)

The SQRT function returns a numeric value that approximates the square root of number (a numeric data item or literal
with a non-negative value).

6.1.14.75. STANDARD-DEVIATION(number-1 [, number-2] ...)

This function returns the statistical standard deviation of the specified list numbers (these may be numeric data items or
literals).

11FEB2012 Version 6-33

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

6.1.14.76. STORED-CHAR-LENGTH(string)

Returns the length —in bytes — of the specified string (a group item, USAGE DISPLAY elementary item or alphanumeric
literal) minus the total number of trailing spaces, if any.

6.1.14.77. SUBSTITUTE(string, from-1, to-1 [, from-n, to-n])

This function parses the specified string, replacing all occurrences of the from-n strings with the corresponding to-n
strings. The from strings must match exactly with regard to value and case. The from strings do not have to be the
same length as the to strings. All arguments are group items, USAGE DISPLAY elementary items or alphanumeric
literals.

A null to string will be treated as a single SPACE.

6.1.14.78. SUBSTITUTE-CASE(string, from-1, to-1 [, from-n, to-n])

The SUBSTITUTE-CASE function operates the same as the SUBSTITUTE function, except that from string matching is
performed without regard for case. All arguments are group items, USAGE DISPLAY elementary items or alphanumeric
literals.

6.1.14.79. SUM(number-1 [, number-2] ...)

The SUM function returns a value that is the sum of the number arguments (these may be numeric data items or
literals).

6.1.14.80. TAN(angle)

Determines and returns the trigonometric tangent of the specified angle (a numeric literal or data item). The angle is
assumed to be a value expressed in radians.

6.1.14.81. TEST-DATE-YYYYMMDD(date)

Determines if the supplied date (a numeric integer data item or literal) is a valid date of the form yyyymmdd and that
the date is in the range 1601/01/01 to 9999/12/31. Ifitis, a 0 value is returned. If itisn’t, a value of 1,2 or 3 is
returned signaling the problem lies with the year, month or day, respectively.

6.1.14.82. TEST-DAY-YYYYDDD(date)

Determines if the supplied date (a numeric integer data item or literal) is a valid date of the form yyyyddd and that the
date is in the range 1601001 to 9999365. If it is, a 0 value is returned. If it isn’t, a value of 1 or 2 is returned signaling
the problem lies with the year or day, respectively.

6.1.14.83. TEST-NUMVAL(string)

The TEST-NUMVAL function evaluates the specified string (a group item, USAGE DISPLAY elementary item or
alphanumeric literal) for being appropriate for use as the string argument to a NUMVAL function, returning a TRUE
value if it is appropriate and FALSE otherwise.

See Also...
‘ The NUMVAL Intrinsic Function 6.1.14.58 ‘

6.1.14.84. TEST-NUMVAL-C(string [, symbol])

11FEB2012 Version 6-34

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

The TEST-NUMVAL-C function evaluates the specified string (a group item, USAGE DISPLAY elementary item or
alphanumeric literal) and symbol combination for being appropriate for use as the arguments to a NUMVAL-C function,
returning a TRUE value if they are appropriate and FALSE otherwise.

See Also...
‘ The NUMVAL-C Intrinsic Function 6.1.14.59 ‘

6.1.14.85. TEST-NUMVAL-F(string)

This function evaluates the specified string (a group item, USAGE DISPLAY elementary item or alphanumeric literal) for
being appropriate for use as the string argument to a NUMVAL-F function, returning a TRUE value if it is appropriate
and FALSE otherwise.

See Also...
‘ The NUMVAL-F Intrinsic Function 6.1.7.60 ‘

6.1.14.86. TRIM(string[, LEADING|TRAILING])

This function removes leading or trailing spaces from the specified string (a group item, USAGE DISPLAY elementary
item or alphanumeric literal). The second argument is specified as a keyword, not a quoted string or identifier. If no
second argument is specified, both leading and trailing spaces will be removed.

6.1.14.87. UPPER-CASE(string)

This function returns the value of string (a group item, USAGE DISPLAY elementary item or alphanumeric literal),
converted entirely to upper case. Note that what constitutes a “letter” (or upper/lower case too, for that manner) may
be influenced through the use of CHARACTER CLASSIFICATION specifications in the OBJECT-COMPUTER paragraph.

See Also...
‘ The OBJECT-COMPUTER Paragraph 4.1.2 ‘

6.1.14.88. VARIANCE(number-1 [, number-2] ...)

This function returns the statistical variance of the specified list numbers (these may be numeric data items or literals).

6.1.14.89. YEAR-TO-YYYY (yy [, yy-cutoff])

YEAR-TO-YYYY converts yy (a) - a two-digit year - to a four-digit format (yyyy). The optional yy-cutoff argument is the
year cutoff used to delineate centuries; if yy meets or exceeds this cutoff value, the result will be 19yy; if yy is less than
the cutoff, the result will be 20yy. The default cutoff value if no second argument is given will be 50. Both arguments
must be numeric data items or literals.

6.2. GNU COBOL Statements

The remaining sections in this chapter present (in alphabetical order) the various verbs (statements) that make up the
GNU COBOL procedural language.

6.2.1. ACCEPT
6.2.1.1. ACCEPT Format 1 - Read from Console

11FEB2012 Version 6-35

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

Figure 6-20 - ACCEPT (Read from Console) Syntax

This format of the ACCEPT verb is used to read a value from the console
ACCEPT identifier-1 window or the standard input device and store it into a data item
[EROM mnemonic-name-1] (identifier-1).
[END-ACCEPT]

1. Mnemonic-name-1 must either be the built-in device name CONSOLE, STDIN, SYSIN or SYSIPT or a user-defined
(SPECIAL-NAMES) mnemonic name attached to one of those four device names.

2. If no FROM clause is specified, FROM CONSOLE is assumed.

3. Input will be read either from the console window (CONSOLE) or from the system-standard input (pipe 0 = STDIN,
SYSIN or SYSIPT) and will be saved in identifier-1.

4. If identifier-1 is a numeric data item, the character value read from the console or standard-input device will be
parsed according to the rules for “Format 1” input to the NUMVAL intrinsic function.

See Also...
‘ The SPECIAL-NAMES Paragraph 4.1.4 ‘ ‘ The NUMVAL Intrinsic Function 6.1.14.58

6.2.1.2. ACCEPT Format 2 - Retrieve Command-Line Arguments

Figure 6-21 - ACCEPT (Command Line Arguments) Syntax

This format of the ACCEPT verb is used to retrieve
ACCEPT identifier-1 information from the programs command-line.

COMMAND -LINE
FROM { ARGUMENT-NUMBER
ARGUMENT-VALUE [exception-handler]

[END-ACCEPT]

1. When you accept from the COMMAND-LINE option, you will retrieve the entire set of arguments entered on the
command line that executed the program, exactly as they were specified. Parsing that returned data into its
meaningful information will be your responsibility.

2. By accepting from ARGUMENT-NUMBER, you will be asking the GNU COBOL run-time system to parse the
arguments from the command-line and return the number of arguments found. Parsing will be conducted
according to the operating system’s rules, as follows:

» Arguments will be separated by treating SPACES between characters as the delineators between arguments.
The number of spaces separating two non-blank values is irrelevant.

» Strings enclosed in double-quote characters (“) will be treated as a single argument, regardless of how many
spaces (if any) might be imbedded within those quotation characters.

» On Windows systems, single-quote, or apostrophe characters (‘) will be treated just like any other data
character and will NOT delineate strings.

3. By accepting from ARGUMENT-VALUE, you will be asking the GNU COBOL run-time system to parse the arguments
from the command-line and return the “current” argument. You specify which argument number is “current” via
the DISPLAY ... UPON ARGUMENT-NUMBER statement (section 0). Parsing or arguments will be conducted
according to the rules set forth in #2 above.

4. Attempts to retrieve non-existent arguments can be handled via an optional exception-handler.

See Also...
‘ Handling Exceptions (ON EXCEPTION) 6.1.12.4 ‘ ‘ The DISPLAY Statement (Command Line) 6.2.12.2

6.2.1.3. ACCEPT Format 3 - Retrieve Environment Variable Values

11FEB2012 Version 6-36

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

Figure 6-22 - ACCEPT (Environment Variable Values) Syntax

This format of the ACCEPT verb is used to retrieve
ACCEPT identifier-1 environment variable values.

ENVIRONMENT-VALUE

FROM

ENVIRONMENT { literal-1 }

identifier-2

[exception-handler]
[END-ACCEPT]

1. By accepting from ENVIRONMENT-VALUE, you will be asking the GNU COBOL run-time system to retrieve the value
of the environment variable whose name is currently in the ENVIRONMENT-NAME register. A value may be placed
into the ENVIRONMENT-NAME register using the DISPLAY statement.

2. Asimpler approach to retrieving an environment variables value is to use “ACCEPT ... FROM ENVIRONMENT".
Using that form, you specify the environment variable to be retrieved right on the ACCEPT command itself.

3. The optional exception-handler may be used to detect requests to retrieve the values of non-existent environment
variables..

See Also...
| Handling Exceptions (ON EXCEPTION) 6.1.12.4 | | The DISPLAY Statement (Environment) 6.2.12.3

6.2.1.4. ACCEPT Format 4 - Retrieve Full-Screen Data

11FEB2012 Version 6-37

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

Figure 6-23 - ACCEPT (Retrieve Screen Data) Syntax

This format of the ACCEPT
ACCEPT identifier-1 verb is used to retrieve
data from a formatted
console window screen.

[FROM CRT] [MODE IS BLOCK]

[{integer—l } 1
LINE NUMBER identifier-2
COLUMN integer-2
AT —_—
T { POSITION }NUMBER { identifier-3 }
integer-3
L identifier-4]
[attribute-specification .. 1
LOWER | UPPER
up { integer-4 } { LINE }
SCROLL | pouwn BY 1 identifier-5 | | LINES
WITH | . s
TIMEOUT Integer-
{ IIME_O_LLI} AFTER {identifier-6 }
CONVERSION
UPDATE

[exception-handler]
[END-ACCEPT]

1. The following attribute-specification clauses are allowed on the ACCEPT statement — these are the same as those
allowed for SCREEN SECTION data items.

AUTO | AUTO-SKIP | AUTOTERMINATE FULL | LENGTH-CHECK REQUIRED | EMPTY-CHECK

BACKGROUND-COLOR HIGHLIGHT | LOWLIGHT REVERSE-VIDEO
BEEP | BELL LEFTLINE SECURE | NO-ECHO
BLINK OVERLINE UNDERLINE
FOREGROUND-COLOR PROMPT CHARACTER

2. If identifier-1 is defined in the SCREEN SECTION, any AT, attribute-specification LOWER, UPPER or SCROLL clauses
specified on the ACCEPT will be ignored.

3. The various AT clauses provide a means of positioning the cursor to a specific spot on the screen before the screen
is read. The literal-3 / identifier-4 value must be a four- or six-digit value with the 1* half of the number indicating
the line where the cursor should be positioned and the second half indicating the column. There is no distinction
between using the word COLUMN or POSITION.

4. WITH options (including the various individual attribute-specifications) should be coded only once.

5. The SCROLL option will cause the entire contents of the screen to be scrolled UP or DOWN by the specified number
of lines before any value is displayed on the screen. It is possible to specify a SCROLL UP clause as well as a SCROLL
DOWN clause. If no LINES specification is made, “1 LINE” will be assumed.

6. The TIMEOUT option will cause the ACCEPT to wait no more than the specified number of seconds for input. The
wait count may be specified as a positive integer or a numeric data item with a positive value. Once the timeout
limit expires, ACCEPT will proceed as if the Enter key had been pressed with no data being entered. The keyword
TIME-OUT may be used as a synonym for TIMEOUT.

7. While supported syntactically, the CONVERSION and UPDATE options are non-functional.

8. When a Format 4 ACCEPT statement with a SCREEN SECTION item specified as identifier-1 is executed, an implied
DISPLAY of identifier-1 will occur before input is accepted. Coding an explicit “DISPLAY identifier-1” before an
“ACCEPT identifier-1” is redundant and will incur the performance penalty of painting the screen contents twice.

11FEB2012 Version 6-38

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

9. The optional exception-handler may be used to handle screen 1/O errors.

10. After this format of the ACCEPT statement is executed, the programs CRT STATUS code identifier (section 4.1.4) will
be populated with one of the following:

Figure 6-24 - Screen ACCEPT CRT STATUS Codes

Code ‘ Meaning Code Meaning

0000 ENTER key pressed 2005 Esc’’
1001 - 1064 F1-F64 8000 No data is available on screen ACCEPT
2001,2002 PgUp,PgDn” 9000 | Fatal screen /O error

2003,2004,2006 | Up Arrow,Down-Arrow,PrtSc
(Print Screen) 2

This value will indicates what special key was pressed to terminate the ACCEPT.

The actual key pressed to generate a function key (Fn) will depend on the type of terminal device you’re using (PC,
Macintosh, VT100, etc.) and what type of enhanced display driver was configured with the version of GNU COBOL
you're using. For example, on a GNU COBOL built for a Windows PC using MinGW and PDCurses, F1-F12 are the
actual F-keys on the PC keyboard, F13-F24 are entered by shifting the F-keys, F25-F36 are entered by holding Ctrl
while pressing an F-key and F37-F48 are entered by holding Alt while pressing an F-key. On the other hand, a GNU
COBOL implementation built for Windows using Cygwin and NCurses treats the PCs F1-F12 keys as the actual F1-
F12, while shifted F-keys will enter F11-F20. With Cygwin/NCurses, Ctrl- and Alt-modified F-keys aren’t recognized.
Neither are Shift-F11 or Shift-F12.

Numeric keypad keys are not recognizable on Windows MinGW/PDCurses builds of GNU COBOL, regardless of
NumLock settings. Windows Cygwin/NCurses builds recognize numeric keypad inputs properly. Although not
tested during the preparation of this documentation, | would expect native Windows builds using PDCurses to
behave as MinGW builds do and native Unix builds using NCurses to behave as do Cygwin builds.

The CRT STATUS field the status code is saved into will be either COB-CRT-STATUS, if the CRT STATUS clause was
not specified in the SPECIAL-NAMES paragraph, or the programmer-specified identifier if that clause was specified
in SPECIAL-NAMES.

See Also...
‘ Defining Screens 5.2.2 ‘ ‘ Handling Exceptions (ON EXCEPTION) 6.1.12.4

6.2.1.5. ACCEPT Format 5 - Retrieve Date/Time

Figure 6-25 - ACCEPT (Retrieve Date/Time) Syntax

This format of the ACCEPT verb is used to retrieve the current
ACCEPT identifier-1 system date, time or current day of the week and store it into a data
DATE [YYYYMMDD] item.
From | DAY [YYYYDDD]
DAY -OF -WEEK
TIME
[END-ACCEPT]

1. The data retrieved from the system, and the format in which it is structured, will vary according to the following
chart:

Figure 6-26 - ACCEPT Options for DATE/TIME Retrieval

ACCEPT Option Data Returned identifier-1 Format
DATE Current date in Gregorian form | @1 CURRENT-DATE.
(two-digit year) @5 CD-YEAR PIC 9(2).
ity @5 CD-MONTH PIC 9(2).
@5 CD-DAY-OF-MONTH PIC 9(2).

® These keys are available only if the environment variable COB_SCREEN_EXCEPTIONS is set to any non-blank value at runtime.

% These keys are not detectable on Windows systems

7 This key is available only if the environment variable COB_SCREEN_ESC is set to any non-blank value at runtime (this is in

addition to setting COB_SCREEN_EXCEPTIONS)
11FEB2012 Version 6-39

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

ACCEPT Option ‘ Data Returned ‘ identifier-1 Format

DATE YYYYMMDD | Current date in Gregorian form | ©1 CURRENT-DATE.

(four-digit year) @5 CD-YEAR PIC 9(4).
@5 CD-MONTH PIC 9(2).
@5 CD-DAY-OF-MONTH PIC 9(2).
DAY Current date in Julian form @1 CURRENT-DATE.
(two-digit year) @5 CD-YEAR PIC 9(2).
@5 CD-DAY-OF-YEAR PIC 9(3).
DAY YYYYDDD Current date in Julian form 01 CURRENT-DATE.
(four-digit year) @5 CD-YEAR PIC 9(4).
@5 CD-DAY-OF-YEAR PIC 9(3).
DAY-OF-WEEK | Current day of the week 01 CURRENT-DATE.
@5 CD-DAY-OF -WEEK PIC 9(1).
88 MONDAY VALUE 1.
88 TUESDAY VALUE 2.
88 WEDNESDAY VALUE 3.
88 THURSDAY VALUE 4.
88 FRIDAY VALUE 5.
88 SATURDAY VALUE 6.
88 SUNDAY VALUE 7.
TIME Current time @1 CURRENT-TIME.
@5 CT-HOURS PIC 9(2).
@5 CT-MINUTES PIC 9(2).
@5 CT-SECONDS PIC 9(2).

06 CT-HUNDREDTHS-OF-SECS PIC 9(2).

6.2.1.6. ACCEPT Format 6 - Retrieve Screen Information

Figure 6-27 - ACCEPT (Retrieve Screen Information) Syntax

This format of the ACCEPT verb is used to retrieve
ACCEPT identifier-1 information about the console window or about the
LINES | LINE-NUMBER user’s interactions with it.
EROM 1 COLUMNS | coLS
ESCAPE KEY
[END-ACCEPT]

The LINES and COLUMNS options will retrieve the respective components of the size of the console display. When
the console is running in a windowed environment, this will be the sizing of the window in which the program is
executing, in terms of horizontal (COLUMNS) or vertical (LINES) character counts — not pixels. When the system is
not running a windowing environment, the physical console screen attributes will be returned. In environments
such as a Windows console window, where the logical size of the window may far exceed that of the physical
console window, the size returned will be that of the physical console window. If necessary, the screen will be
initialized so that the screen window size may be determined. Values of 0 will be returned if GNU COBOL was not
generated to include screen I/0.. Compare this result with that of the CBL_GET_SCR_SIZE built-in subroutine.

The LINE NUMBER option is a synonym for LINES and the word COLUMNS may be specified as COLS.

The ESCAPE KEY option may be used after a format 4 ACCEPT has been used to retrieve data off a formatted
screen. The result returned will be the four-digit key id of the special key that was pressed to terminate the format
4 ACCEPT (a 0000 is returned for the Enter key). This value will be the same as that returned into the CRT STATUS
field defined in the SPECIAL-NAMES paragraph or into the COB-CRT-STATUS identifier if no CRT STATUS was
specified. Consult Figure 6-23 for a list of possible values.

See Also...

The SPECIAL-NAMES Paragraph 4.1.4 ‘ ‘ The CBL_GET_SCR_SIZE Subroutine 8.3.1.30

6.2.1.7. ACCEPT Format 7 - Retrieve Run-Time Information

11FEB2012 Version 6-40

GNU COBOL 2.0 Programmers Guide

PROCEDURE DIVISION

Figure 6-28 - ACCEPT (Retrieve Run-Time Information) Syntax

[END-ACCEPT]

This format of the ACCEPT verb is used to retrieve run-time

ACCEPT identifier-1 information such as the most-recent error exception code and
FROM EXCEPTION STATUS the current user’s user name.
USER NAME

1. The specified identifier must be defined as a PIC X(4) item to receive EXCEPTION STATUS. When receiving USER
NAME, the identifier should be large enough to receive the longest user name on your system. If insufficient space
is allocated, the returned value will be truncated. If excess space is allocated, the returned value will be padded

with SPACES (to the right).

2. The most-recently encountered runtime error status will be returned in the identifier (‘0000’ if no error has
occurred) when issuing an ACCEPT ... FROM EXCEPTION STATUS.

3. The following table summarizes the current run-time error exception codes.

Figure 6-29 - Run-Time Exception Code Values

Exception Code Error Type String Returned by the Description

Returned to ACCEPT EXCEPTION-STATUS Function

0101 EC-ARGUMENT-FUNCTION Function argument error

0202 EC-BOUND-ODO OCCURS ... DEPENDING ON data item out of

bounds
0204 EC-BOUND-PTR Data-pointer contains an address that is out of
bounds

0205 EC-BOUND-REF-MOD Reference modifier out of bounds

0207 EC-BOUND-SUBSCRIPT Subscript out of bounds

0303 EC-DATA-INCOMPATIBLE Incompatible data exception

0500 EC-I-O input-output exception

0501 EC-I-O-AT-END I-O status "1x"

0502 EC-I-O-EOP An end of page condition occurred

0504 EC-I-O-FILE-SHARING I-O status "6x"

0505 EC-I-O-IMP I-O status "9x"

0506 EC-I-O-INVALID-KEY I-O status "2x"

0508 EC-I-O-LOGIC-ERROR I-O status "4x"

0509 EC-I-O-PERMANENT-ERROR I-O status "3x"

050A EC-I-O-RECORD-OPERATION I-O status "5x"

0601 EC-IMP-ACCEPT Implementation-defined accept condition

0602 EC-IMP-DISPLAY Implementation-defined display condition

0A00 EC-OVERFLOW Overflow condition

0A02 EC-OVERFLOW-STRING STRING overflow condition
0A03 EC-OVERFLOW-UNSTRING UNSTRING overflow condition

0BO5 EC-PROGRAM-NOT-FOUND Called program not found

0D03 EC-RANGE-INSPECT-SIZE Size of replace item in inspect differs

1000 EC-SIZE Size error exception

1004 EC-SIZE-OVERFLOW Arithmetic overflow in calculation

1005 EC-SIZE-TRUNCATION Significant digits truncated in store

1007 EC-SIZE-ZERO-DIVIDE Division by zero

1202 EC-STORAGE-NOT-ALLOC The data-pointer specified in a FREE statement
does not identify currently allocated storage

1203 EC-STORAGE-NOT-AVAIL The amount of storage requested by an ALLOCATE
statement is not available

4. When using ACCEPT ... FROM USER NAME, the returned result is the userid that was used to login to the system
with, and not any actual first and/or last name of the user in question (unless, of course, that is the information

used as a logon id).

11FEB2012 Version

6-41

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

6.2.2. ADD
6.2.2.1. ADD Format1 - ADD TO

Figure 6-30 - ADD (TO) Syntax

This format of the ADD statement generates the

arithmetic sum of all arguments that appear before the

ADD { { literal-1 } TO (identifier-1 or literal-1) and then adds that sum to
identifier-1 each of the identifiers listed after the TO (identifier-2).

T0 { identifier-2 [rounding-option] } ..
[size-error-clause]

[END-ADD]

1. Identifier-1 and identifier-2 must be numeric unedited data items while literal-1 must be a numeric literal.

2. The value(s) specified before the “TO” keyword will be added together, and that sum will be added onto each of
the identifiers specified after the “TO” keyword (identifier-2), in turn.

3. The optional “rounding-option” clause available to each identifier-2 will control how non-integer results will be
saved.

4. The optional size-error-clause may be used to detect arithmetic overflow situations where identifier-2 is
insufficiently sized to hold the generated results.

See Also...

| Handling Size Errors (ON SIZE ERROR) 61126 | | Rounding Options 6.1.12.7

6.2.2.2. ADD Format 2 - ADD GIVING

Figure 6-31 - ADD (GIVING) Syntax

This format of the ADD statement generates the
' arithmetic sum of all arguments that appear before
ADD { { I.lteral.-.l } the TO (identifier-1 or literal-1), adds that sum to
identifier-1 the contents of identifier-2 (if any) and then
[10 identifier2] replaces the contents of the identifiers listed after
the GIVING (identifier-3) with that sum.

GIVING { identifier-3 [rounding-option] } ..

[size-error-clause]

[END-ADD]

1. Identifier-1 and identifier-2 must be numeric unedited data items, identifier-3 must be a numeric (edited or
unedited) data item and literal-1 must be a numeric literal.

2. The value(s) specified before the “TO” keyword will be added together, and that sum will be added to the value of
identifier-2 (if any). The contents of identifier-2 are not altered. The resulting sum is then saved to each of the
identifiers specified after the “GIVING” keyword (identifier-3), in turn. Unless also specified as one of the identifier-

1 items or as the identifier-2 item, none of the identifier-3 items will be involved in the calculation other than simply

serving as the receiving field(s) of the operation.

3. The optional “rounding-option” clause available to each identifier-3 will control how non-integer results will be
saved.

4. The optional size-error-clause may be used to detect arithmetic overflow situations where identifier-2 is
insufficiently sized to hold the generated results.

11FEB2012 Version 6-42

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

See Also...
Handling Size Errors (ON SIZE ERROR) 6.1.12.6 ‘ ‘ Rounding Options 6.1.12.7 ‘

6.2.2.3. ADD Format 3 - ADD CORRESPONDING

Figure 6-32 - ADD (CORRESPONDING) Syntax

This format of the ADD statement generates code
ADD CORRESPONDING identifier-1 equivalent to individual ADD TO statements for
T0 identifier-2 [rounding-option] corresponding matches of data items found subordinate
[size-error-clause] to the two identifiers.
[END-ADD]

1. When corresponding matches are established, the effect of an ADD CORRESPONDING on those matches will be as
if a series of individual ADD Format 1 statements were done — one for each match.

2. The optional “rounding-option” clause available to each identifier-2 will control how non-integer results will be
saved.

3. The optional size-error-clause may be used to detect arithmetic overflow situations where identifier-2 is
insufficiently sized to hold the generated results.

See Also...

The CORRESPONDING Clause 6.1.12.2 Rounding Options 6.1.12.7

Handling Size Errors (ON SIZE ERROR) 6.1.12.6

11FEB2012 Version 6-43

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

6.2.3. ALLOCATE

Figure 6-33 - ALLOCATE Syntax

ALLOCATE {

[INITIALIZED]
[RETURNING identifier-2]

The ALLOCATE statement is used to dynamically allocate

expression-1 CHARACTERS } memory at run-time.
identifier-1

1. If used, expression-1 must be an arithmetic expression with a non-zero positive integer value.

2. If used, identifier-1 should be an 01-level item defined with the BASED attribute in WORKING-STORAGE or LOCAL-
STORAGE. It can be an 01 item defined in the LINKAGE SECTION without the BASED option, but using such a data
item is not recommended.

3. If used, identifier-2 should be a USAGE POINTER data item.

4. The optional RETURNING clause will return the address of the allocated memory block into the specified USAGE
POINTER item. When this option is used, GNU COBOL will retain knowledge of the originally-requested size of the
allocated memory block in case a FREE statement is ever issued against that USAGE POINTER item.

5. When the “identifier-1” option is used in conjunction with INITIALIZED, the allocated memory block will be
initialized according to the PICTURE and (if any) VALUE clauses present in the definition of identifier-1 as if an
INITIALIZE identifier-1 WITH FILLER ALL TO VALUE THEN TO DEFAULT were executed once identifier-1 was
allocated.

6. When the “expression-1 CHARACTERS” option is used, INITIALIZED will initialize the allocated memory block to
binary zeros.

7. If the INITIALIZED clause is not used, the initial contents of allocated memory will be left to whatever rules of
memory allocation are in effect for the operating system the program is running under.

8. There are two basic ways in which this statement is used. The simplest is:

ALLOCATE My-01-Item
With this form, a block of storage equal in size to the defined size of My-01-ltem (which must have been defined
with the BASED attribute) will be allocated. The address of that block of storage will become the base address of
My-01-Item so that it and its subordinate data items become usable within the program.
A second (and equivalent) approach is:

ALLOCATE LENGTH OF My-01-Item CHARACTERS RETURNING The-Pointer.

SET ADDRESS OF My-01-Item TO The-Pointer.

9. Referencing a BASED data item either before its storage has been ALLOCATEd or after its storage has been FREEd

will lead to unpredictable results®®.
See Also...
The DATADIVISION 5 The FREE Statement 6.4.17
Dynamically Allocated Items (BASED) 5.2.1.2 The INITIALIZE Statement 6.2.22
Storage Format of Data (USAGE) 5.2.1.11

28

The COBOL standards like to use the term “unpredictable results” to indicate any sort of unexpected or undesirable
behavior — the results in this case probably are predictable though — the program will probably abort from
attempting to access an invalid address.

11FEB2012 Version 6-44

GNU COBOL 2.0 Programmers Guide

PROCEDURE DIVISION

6.2.4. ALTER

Figure 6-34 - ALTER Syntax

ALTER procedure-name-1 T0 PROCEED TO procedure-name-2

The ALTER verb was used in the early years of the
COBOL language to edit a program, changing a “GO
TO” statement @t run time tobranchtoa spot

in the program different than where the GO TO
statement was originally compiled for.

1. Support for the ALTER verb has been added to GNU COBOL for the purpose of enabling GNU COBOL to pass those
National Institute of Standards and Technology (NIST) tests for the COBOL programming language that require

support for the ALTER verb.

2. Use of this statement is STRONGLY discouraged because it’s use makes it extremely difficult to know where a
potentially ALTER-able GO TO statement is actually going to at run time.

11FEB2012 Version

6-45

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

6.2.5. CALL

Figure 6-35 - CALL Syntax

The CALL statement is used to transfer control to a sub-
program, called a subroutine.

STDCALL literal-1
CALL| | STATIC . { identifier-1 } Chapter 7 deals with the specifics of using subprograms
mnemonic-name-1 with GNU COBOL programs.

[USING argument-1 ..]

[RETURNING|GIVING identifier-2]

[overflow-clause | exception-clause]
[END-CALL]

1. The expectation is that the subroutine will eventually return control back to the CALLing program, at which point
the CALLing program will resume execution starting with the statement immediately following the CALL.
Subprograms are not required to return to their CALLers, however, and are free to halt program execution if they
wish.

2. The mnemonic-name-1 / STATIC / STDCALL option, if used, affects the linkage conventions that will be used to the
subroutine being called, as follows:

a. The STATIC option will cause the linkage to the subroutine to be performed in such a way as to require the
subroutine to be statically-linked with the calling program. Note that this enables static-linking to be used on a
subroutine-by-subroutine selective basis.

b. The STDCALL option allows system-standard calling conventions (as opposed to GNU COBOL calling
conventions) to be used when calling a subroutine. The definition of what consititutes “system standard” may
vary from operating system to operating system. Use of this requires special knowledge about the linkage
requirements of subroutines you are intending to CALL. Subroutines written in GNU COBOL do not need this

option.

c. The mnemonic-name option allows a custom-defined calling convention to be used. Such mnemonic names
are defined using the CALL-CONVENTION clause of the SPECIAL-NAMES paragraph. That clause associates a
decimal integer value with mnemonic-name-1 such that the individual bits set on or off in the binary number
corresponding to the integer affect linkage to the subroutine as described in the following chart. Those rows of
the chart that are greyed-out represent bit positions (switch settings) in the integer value that are currently
accepted if (to provide compatibility to other COBOL implementations) coded, but are otherwise unsupported.

Bit Decimal Meaning if 0 Meaning if 1
Position Value If
1

0 1 Subroutine arguments will be processed in right- | Subroutine arguments will be
(right- to-left sequence passed in left-to-right sequence
most)

1 2 The calling program will flush processed The called program (subroutine)

arguments from the argument stack will flush processed arguments

from the argument stack

2 4 The RETURN-CODE register will be updated in The RETURN-CODE register will
addition to any RETURNING/GIVING data item not be updated (but any
RETURNING/GIVING data item
still will)

11FEB2012 Version 6-46

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

Bit Decimal Meaning if 0 Meaning if 1
Position Value If
1
3 8 If CALL “literal” is used, the subroutine will be If CALL “literal” is used, the
located and linked in with the calling program at | subroutine can only be located
compile time or may be dynamically located and | and linked with the calling
loaded at execution time, depending on program at compilation time.
compiler switch settings and operating system
capabilities.
4 16 0S/2 “OPTLINK” conventions will not be used to | OS/2 “OPTLINK” conventions
CALL the subprogram. will be used to CALL the
subprogram.
5 32 Windows 16-bit “thunking” will not be in effect. | Windows 16-bit “thunking” will
be used to CALL the subroutine
as a DLL.
6 64 The STDCALL convention will not be used. The STDCALL convention will be
used.”

Using the “STDCALL” option on a CALL statement is equivalent to using a CALL-CONVENTION “8” (only bit 3 set)
Using the “STATIC” option on a CALL statement is equivalent to using a CALL CONVENTION 64 (only bit 6 set)

3. The RETURNING and GIVING keywords may be used interchangeably.

4. The value of literal-1 or identifier-1 is the entry-point of the subprogram you wish to CALL.

5. When you CALL a subroutine using identifier-1, you are forcing the runtime system to call a dynamically-loadable
module. The contents of identifier-1 will be the entry-point name within that module. If this is the first CALL to any
entry-point within the module, the contents of identifier-1 must be the name of the module itself (making it the
primary entry-point name within the module).

6. If the subprogram being called is a GNU COBOL program, and if that program had the INITIAL attribute specified on
its PROGRAM-ID clause, all of the subprogram’s DATA DIVISION data will be restored to its initial state each time
the subprogram is executed®. This [re]-initialization behavior will always apply to any data defined in the
subprogram’s LOCAL-STORAGE SECTION (if any), regardless of the use (or not) of INITIAL.

7. The USING clause defines a list of arguments that may be passed from the calling program to the subprogram. The
syntax used to specify an argument is as follows:

Figure 6-36 - Argument Format When CALLing a Subroutine

AUTO .
REFERENCE [UNSIGNED] | SIZE IS { DEFAULT {’,’tem/f,z }
BY 1 CONTENT integer-1 identifier-2
VAL UE :

8. The manner in which an argument is passed to the subroutine depends upon it’s BY clause, if any, specified for the
arguments, as follows:

a. BY REFERENCE passes the address of the argument to the subprogram. If the subprogram changes the
contents of that argument, the change will be “visible” to the calling program.

b. BY CONTENT passes the address of a copy of the argument to the subprogram. If the subprogram changes the
value of such an argument, the original version of it back in the calling program remains unchanged.

» The STDCALL calling convention is the one required to use the Microsoft Win32 API

* Thisis regardless of which entry-point within the subprogram is CALLed

11FEB2012 Version 6-47

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

c. BY VALUE passes the value of the argument as the argument. This feature exists to provide compatibility with
C, C++ and other languages and would not normally be used when calling GNU COBOL subprograms.

d. Ifan argument lacks a BY REFERENCE, BY CONTENT or BY VALUE clause, the most-recently encountered “BY”
specification on that CALL statement will be assumed (or BY REFERENCE if there have been no “BY”
specifications specified yet).

e. No more than 36 arguments may be passed to a subroutine, unless the GNU COBOL compiler was built with a
specifically different argument limit specified for it..

9. The RETURNING clause allows you to specify a data item into which the subroutine should return a value. If you
use this clause on the CALL, the subroutine should include a RETURNING clause on its PROCEDURE DIVISION
header. Of course, a subroutine may pass a value back in any argument passed BY REFERENCE.

10. The optional overflow-clause or exception-clause (the two may be used interchangably) may be used to define
actions to be taken if the subroutine could not be located and/or loaded.

11. For additional information, see the documentation of the CANCEL,ENTRY,EXIT PROGRAM and GOBACK statements.

See Also...
The IDENTIFICATION DIVISION 3 The ENTRY Statement 6.2.14
The SPECIAL-NAMES Paragraph 4.1.4 The EXIT PROGRAM Statement 6.2.16
The DATADIVISION 5 The GOBACK Statement 6.2.19
Special Registers 6.1.13 Sub-programming 0
Handling Exceptions (ON EXCEPTION) 6.1.12.4 Compiling & Dynamic-Linking Programs 8.1.3.2
Handling Overflow (ON OVERFLOW) 6.1.12.5 Compiling & Static-Linking Programs 8.1.3.3
The CANCEL Statement 6.2.6

11FEB2012 Version 6-48

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

6.2.6. CANCEL

Figure 6-37 - CANCEL Syntax . .
The CANCEL statement unloads the dynamically-loadable module containing the

{ literal-1 } entry-point specified as literal-1 or identifier-1 from memory.
identifier-1

CANCEL

1. If the dynamically-loadable module unloaded by the CANCEL is subsequently re-executed, all DATA DIVISION
storage for that dynamically-loadable module will once again be in its initial state.

See Also...
Sub-programming 0 ‘ ‘ Compiling & Dynamic-Linking Programs 8.1.3.2

11FEB2012 Version 6-49

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

6.2.7. CLOSE

Figure 6-38 - CLOSE Syntax

The CLOSE statement terminates the

program’s access to the specified
REEL |UNIT [FOR REMOVAL] file(s).

CLOSE { file-name-1 WITH LOCK b
WITH NO REWIND

1. The CLOSE statement may only be executed against files that have been successfully OPENed.

2. The REEL, UNIT, WITH LOCK and NO REWIND clauses are recognized syntactically but are otherwise non-functional
except for the fact that a successful CLOSE ... NO REWIND will generate a FILE-STATUS value of 07 rather than 00.

3. A successful CLOSE will write any remaining unwritten record buffers to the file (similar to an UNLOCK) and release
any file locks for the file; regardless of OPEN mode. A closed file will then be no longer available for subsequent 1/0
statements until it is once again OPENed.

4. When a LINE SEQUENTIAL or LINE ADVANCING file is CLOSEd, a final delimiter sequence will be written to the file
to signal the termination point of the final data record in the file. This will only be necessary if the final record
written to the file was written with the AFTER ADVANCING option.

See Also...
Types of Files 1.3.3.5 The OPEN Statement 6.4.29
FILE-STATUS Values Figure The UNLOCK Statement 6.4.48
4-15 The WRITE Statement 6.4.50

11FEB2012 Version 6-50

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

6.2.8. COMMIT
Figure 6-39 - COMMIT Syntax
The COMMIT statement performs an UNLOCK against
COMMIT every currently-OPEN file, but does NOT CLOSE any of the
files.

1. See the UNLOCK statement for additional details.

See Also...
The CLOSE Statement 6.4.7 ‘ ‘ The UNLOCK Statement 6.4.48

11FEB2012 Version 6-51

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

6.2.9. COMPUTE

Figure 6-40 - COMPUTE Syntax

COMPUTE { identifier-1 [rounding-option] } .. =|EQUAL arithmetic-expression-1
[size-error-clause]

[END-COMPUTE]

The COMPUTE statement provides a means of easily performing complex arithmetic operations with a single statement,
instead of using cumbersome and possibly confusing sequences of ADD, SUBTRACT, MULTIPLY and DIVIDE statements.

1. Each identifier-1 must be a numeric or numeric-edited data item.
2. The word EQUAL and the equals-sign (=) may be used interchangeably.

3. The optional “rounding-option” clause available to each identifier-1 will control how non-integer results will be
saved.

4. The optional size-error-clause may be used to detect arithmetic overflow situations where identifier-1 is
insufficiently sized to hold the generated results.

See Also...
Handling Size Errors (ON SIZE ERROR) 6.1.12.6 The DIVIDE Statement 6.4.13
Rounding Options 6.1.12.7 The MULTIPLY Statement 6.4.27
The ADD Statement 6.4.2 The SUBTRACT Statement 6.4.44

11FEB2012 Version 6-52

GNU COBOL 2.0 Programmers Guide

PROCEDURE DIVISION

6.2.10. CONTINUE

Figure 6-41 - CONTINUE Syntax

CONTINUE

whatsoever.

The CONTINUE statement is a no-operation statement, performing no action

1. The CONTINUE statement is often used with IF statements as a place-holder for conditionally-executed code that is
not yet needed or not yet designed. The following two sentences are equivalent. One uses CONTINUE statements
to mark places where code may need to be inserted in the future.

“Minimalist” Coding

(Specifying only what is necessary)

Coding With CONTINUE

IFA=1
IFB=1
DISPLAY ‘A=1 & B=1’ END-DISPLAY
END-IF
ELSE
IFA=2
IF B =2
DISPLAY ‘A=2 & B=2’ END-DISPLAY
END-IF
END-IF
END-IF

(Documenting where code might be needed someday)

IFA=1
IFB=1
DISPLAY ‘A=1 & B=1’ END-DISPLAY
ELSE
CONTINUE
END-IF
ELSE
IF A=2
IF B =2
DISPLAY ‘A=2 & B=2’ END-DISPLAY
ELSE
CONTINUE
END-IF
ELSE
CONTINUE
END-IF
END-IF

Coding such as this is generally a matter of personal preference or site coding standards. There is no difference in
the object code generated by the two, so there isn’t a run-time efficiency issue (just one of “coding efficiency”).

2. Another IF-statement usage for CONTINUE is to avoid the use of NOT in the conditional expression coded on the IF
statement. This too is a personal and/or site standards issue. Here’s an example:

Without CONTINUE

IF Action-Flag NOT = ‘I’ AND ‘U’
DISPLAY ‘Invalid Action-Flag’
EXIT PARAGRAPH

END-IF

With CONTINUE

IF Action-Flag = ‘I’ OR ‘U’
CONTINUE

ELSE
DISPLAY ‘Invalid Action-Flag’
EXIT PARAGRAPH

END-IF

Because of the way COBOL (GNU COBOL included) handles the abbreviation of conditional expressions, the
conditional expression in the left-hand box is actually a short-hand version of the (not-so-intuitive):

IF Action-Flag NOT = €I’ AND Action-Flag NOT = ‘U’

Inexperienced COBOL programmers would have coded the “IF” (incorrectly) as “IF Action-Flag NOT = ‘I’ OR
‘U’”, because it’s basically how one might say it if describing the logic; this is sure to cause run-time problems as it
actually represents “IF Action-Flag NOT = ‘I’ OR Action-Flag NOT = ‘U’ —not the same thing at all!

This causes many programmers to consider the code in the right-hand box to be more readable, even though it is a

little longer.

The IF Statement 6.2.21

11FEB2012 Version

See Also...

6-53

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

6.2.11. DELETE

Figure 6-42 - DELETE Syntax

The DELETE statement logically deletes a record from an
DELETE file-name-1 RECORD ORGANIZATION RELATIVE or ORGANIZATION INDEXED

[invalid-key-clause] file.
[END-DELETE]

1. The ORGANIZATION of file-name-1 must be RELATIVE or INDEXED.

2. For RELATIVE or INDEXED files in the SEQUENTIAL access mode, the last input-output statement executed for file-
name prior to the execution of the DELETE statement must have been a successfully executed sequential-format
READ statement. That READ will therefore identify the record to be deleted.

3. If file-name-1 is a RELATIVE file whose ACCESS MODE is either RANDOM or DYNAMIC, the record to be deleted is
the one whose relative record number is currently the value of the field specified as the files RELATIVE KEY in it’s
SELECT statement.

4. If file-name-1 is an INDEXED file whose ACCESS MODE is RANDOM or DYNAMIC, the record to be deleted is the
one whose primary key is currently the value of the field specified as the RECORD KEY in the file’s SELECT
statement.

5. An “invalid key” condition will exist, and can be dealt with via the invalid-key-clause, if the record specified to be
deleted by the RELATIVE KEY or RECORD KEY value does not exist in an access mode RANDOM or DYNAMIC file.
This is a condition that cannot exist for ACCESS MODE SEQUENTIAL files because of rule #2. DELETE failures on
ACCESS MODE SEQUENTIAL files can only be “handled” via DECLARATIVES (section).

6. Noinvalid-key-clause may be specified for a file who’s ACCESS MODE IS SEQUENTIAL.

See Also...
Types of Files 1.3.3.5 Using DECLARATIVES 6.1.4
Defining File Characteristics (SELECT) 4.2.1 The READ Statement 6.4.31
Handling Invalid Keys (INVALID KEY) 6.1.12.3

11FEB2012 Version 6-54

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

6.2.12. DISPLAY
6.2.12.1. DISPLAY Format 1 - “UPON “device”

Figure 6-43 - DISPLAY (Upon Console) Syntax

This format of the DISPLAY statement displays the
DISPLAY { ﬁg:;i;}er_l } zgsz:zz: ljdeevri\zgfer contents and/or literal values on the
[UPON mnemonic-name-1]
[WITH NO ADVANCING]

[exception-handler]

[END-DISPLAY]

1. If no UPON clause is specified, UPON CONSOLE will be assumed. If the UPON clause is specified, mnemonic-name-1
must be one of the built-in device names or a mnemonic name assigned to one of those devices via the SPECIAL-
NAMES paragraph of the CONFIGURATION SECTION.

2. The NO ADVANCING clause, if used, will suppress the normal carriage-return / line-feed sequence that normally is
added to the end of any console display. You can see an example of this at work in the sample program on page 6-
62.

3. The optional exception-handler may be used to deal with errors attempting to display to the output device.

See Also...
The SPECIAL-NAMES Paragraph 4.1.4 Handling Exceptions (ON EXCEPTION) 6.1.12.4

Built-in Device Names Figure
4-8

4.

6.2.12.2. DISPLAY Format 2 - Access Command-Line Arguments

Figure 6-44 - DISPLAY (Access Command-line Arguments) Syntax . .
This form of the DISPLAY statement may be used to specify the

command-line argument number to be retrieved by a

DISPLAY /.lteral.—.l subsequent ACCEPT or to specify a new value for the command-
identifier-1 .
line arguments themselves.
ARGUMENT-NUMBER
UPON { COMMAND-LINE }

[exception-handler]

[END-DISPLAY]

1. By DISPLAYing a numeric integer value UPON ARGUMENT-NUMBER, you will specify which argument (by its
relative number) will be retrieved by a subsequent ACCEPT ... FROM ARGUMENT VALUE statement.

2. Executing a DISPLAY ... UPON COMMAND-LINE will influence subsequent ACCEPT ... FROM COMMAND-LINE
statements (which will then return the DISPLAYed value), but will not influence subsequent ACCEPT ... FROM
ARGUMENT-VALUE statements — these will continue to return the original program execution parameters.

3. The optional exception-handler may be used to deal any errorsthat occur at run-time.

See Also...
Handling Exceptions (ON EXCEPTION) 6.1.12.4 ‘ ‘ The ACCEPT Statement (Command Line) 6.2.1.2

11FEB2012 Version 6-55

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

6.2.12.3. DISPLAY Format 3 - Access or Set Environment Variables

Figure 6-45 - DISPLAY (Access / Set Environment Variables) Syntax

This form of the DISPLAY statement can be used to create
literal-1 } or modify environment variables.
identifier-1
{ ENVIRONMENT-VALUE }
ENVIRONMENT-NAME

[exception-handler]

[END-DISPLAY]

DISPLAY {

UPON

1. To create or change an environment variable will require two DISPLAY statements. The following example sets the
environment variable “MY_ENV_VAR” to a value of “Demonstration Value”:

DISPLAY “MY_ENV_VAR” UPON ENVIRONMENT -NAME
DISPLAY “Demonstration Value” UPON ENVIRONMENT-VALUE

2. Environment variables created or changed from within GNU COBOL programs will be available to any sub-shell
processes spawned by that program (i.e. CALL “SYSTEM”) but will not be known to the shell or console window that
started the GNU COBOL program.

3. Consider using SET ENVIRONMENT in lieu of DISPLAY to set environment variables as it is much simpler.
4. The optional exception-handler may be used to deal any errorsthat occur at run-time.

See Also...
‘ Handling Invalid Keys (INVALID KEY) 6.1.12.3 ‘ ‘ The SET ENVIRONMENT Statement 6.4.39.1

6.2.12.4. DISPLAY Format 4 - Screen Data

Figure 6-46 - DISPLAY (Screen Data) Syntax

This format of the

DISPLAY { identifier-1 [at-clause] [upon-clause] [with-clause] } .. | DISPLAY statement

[exception-handler] presents data onto a
formatted screen.

[END-DISPLAY]

1. If identifier-1 is defined in the SCREEN SECTION, any at-clause, upon-clause and with-clause specified for that
identifier will be ignored, and all field positioning and screen control will occur as a result of the SCREEN SECTION
definition of identifier-1.

2. The purpose of the at-clause is to define where int 1
on the screen identifier-1 should be displayed. LINE NUMBER { I‘Zeer,wgt;r';r 1 }
Consult the documentation for format 4 of the ! u
ACCEPT s'tatement (Screen Data) for additional At | { COLUMN } \UMBER { integer-2 }
information. == POSITION identifier-2
| integer-3 }
identifier-3
3. The UPON clause, while supported syntactically, is otherwise non-functional
at this time. UPON CRT
CRT-UNDER

11FEB2012 Version 6-56

GNU COBOL 2.0 Programmers Guide

PROCEDURE DIVISION

4. The purpose of the with-clause
is to define the visual attributes attribute-specification ...
that should be applied to .
. o . upP integer-4 { LINE }
- SCROLL BY
identifier-1 when it is displayed { DOWN } [{ identifier-5 } LINES
on the screen. Consult the WITH
documentation for format 4 of — TIMEOUT integer-5
the ACCEPT statement (Screen TIME -OUT } AFTER identifier-6
Data) for additional information.
CONVERSION
The following attribute-
specification clauses are allowed
on a DISPLAY statement with-clause — these are the same as those allowed for SCREEN SECTION data items.
BACKGROUND-COLOR FOREGROUND-COLOR UNDERLINE
BEEP | BELL HIGHLIGHT | LOWLIGHT ERASE EOL | ERASE EOS
BLANK LINE | BLANK SCREEN OVERLINE
BLINK REVERSE-VIDEO
4. The optional exception-handler may be used to deal any screen 1/O errorsthat occur at run-time.
See Also...
Defining Screens 5.2.2 The ACCEPT Statement (Screen Data) 6.4.1.4
Handling Exceptions (ON EXCEPTION) 6.1.12.4

11FEB2012 Version

6-57

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

6.2.13. DIVIDE
6.2.13.1. DIVIDE Format 1 - DIVIDE INTO

Figure 6-47 - DIVIDE INTO Syntax

This format of DIVIDE will divide
a specified value into one or
more data items, replacing the
value in each of those data items
with the result of its old value

[END-DIVIDE] divided by the identifier-1 or
literal-1 value. Any remainder
calculated as a result of the
division is discarded.

DIVIDE

{ literal-1

identifier-1 } INTO { identifier-2 [rounding-option] } ..

[size-error-clause]

1. Identifier-1 and identifier-2 must be numeric unedited data items and literal-1 must be a numeric literal.

2. The optional “rounding-option” clause available to each identifier-2 will control how non-integer results will be
saved.

3. The optional size-error-clause may be used to detect arithmetic overflow situations where identifier-2 is
insufficiently sized to hold the generated results; this clause will also detect attempts to divide by zero.

See Also...
‘ Handling Size Errors (ON SIZE ERROR) 6.1.12.6 ‘ ‘ Rounding Options 6.1.12.7

6.2.13.2. DIVIDE Format 2 - DIVIDE INTO GIVING

Figure 6-48 - DIVIDE INTO GIVING Syntax

This format of DIVIDE will divide a specified
value (identifier-1 or literal-1) into another value
(identifier-2 or literal-2) and will then replace
the contents of one or more receiving data
items (identifier-3 ...) with the results of that
division.

literal-1 } o { literal-2 }

DIVIDE
{ identifier-1 identifier-2

GIVING { identifier-3 [rounding-option] } ..

[REMAINDER identifier-4] Any remainder calculated as a result of the
[size-error-clause] division is discarded unless a REMAINDER clause
is present.

[END-DIVIDE]

1. Identifier-1 and identifier-2 must be numeric unedited data items, identifier-3 and identifier-4 must be numeric
(edited or unedited) data items and literal-1 and literal-2 must be numeric literals.

2. The optional “rounding-option” clause available to each identifier-3 will control how non-integer results will be
saved.

3. The optional size-error-clause may be used to detect arithmetic overflow situations where identifier-3 is
insufficiently sized to hold the generated results; this clause will also detect attempts to divide by zero.

See Also...
Handling Size Errors (ON SIZE ERROR) 6.1.12.6 l ‘ Rounding Options 6.1.12.7

11FEB2012 Version 6-58

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

6.2.13.3. DIVIDE Format 3 - DIVIDE BY GIVING

Figure 6-49 - DIVIDE BY GIVING Syntax

This format of DIVIDE will divide a specified
)) value (identifier-1 or literal-1) by another value
DIVIDE { literal-1 } BY { literal-2 } (identifier-2 or literal-2) and will then replace

identifier-1 identifier-2 the contents of one or more receiving data
GIVING { identifier-3 [rounding-option] } . |C’|cems (identifier-3 ...) with the results of that
ivision.

[REMAINDER identifier-4] Any remainder calculated as a result of the

division is discarded unless a REMAINDER clause
is present.

[size-error-clause]

[END-DIVIDE]

1. Identifier-1 and identifier-2 must be numeric unedited data items, identifier-3 and identifier-4 must be numeric
(edited or unedited) data items and literal-1 and literal-2 must be numeric literals.

2. The optional “rounding-option” clause available to each identifier-3 will control how non-integer results will be
saved.

3. The optional size-error-clause may be used to detect arithmetic overflow situations where identifier-3 is
insufficiently sized to hold the generated results; this clause will also detect attempts to divide by zero.

See Also...
Handling Size Errors (ON SIZE ERROR) 6.1.12.6 ‘ ‘ Rounding Options 6.1.12.7

11FEB2012 Version 6-59

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

6.2.14. ENTRY

Figure 6-50 - ENTRY Syntax

The ENTRY statement is used to define an alternate entry-point
ENTRY literal-1 [USING argument-1 ..] into a subroutine, along with the arguments that subroutine will
be expecting.

1. You may not use an ENTRY statement in a nested subprogram.

2. The USING clause defines the arguments the subroutine entry-point supports. This list of arguments must match
up against the USING clause of any CALL statements that will be invoking the subroutine using this entry-point.

3. Each argument-n specified on the ENTRY statement must be defined in the LINKAGE SECTION of the subprogram in
which the ENTRY statement exists.

4. The literal-1 value will specify the entry-point name of the subroutine. It must be specified exactly on CALL
statements (with regard to the use of upper- and lower-case letters) as it is specified on the ENTRY statement.

. Figure 6-51 - ENTRY Statement Argument Syntax
5. Each argument-n entry must follow the syntax shown to the right. The

usage of REFERENCE, CONTENT and VALUE on an argument should REFERENCE
match the manner in which that argument is being passed on the CALL BY { CONTENT identifier-1
statement. VALUE
See Also...
The DATADIVISION 5 Sub-programming 0
The CALL Statement 6.4.5 Details of Nested Subprograms 7.6

11FEB2012 Version 6-60

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

6.2.15. EVALUATE

Figure 6-52 - EVALUATE Syntax

EVALUATE selection-subject-1 [ALSO selection-subject-2] ..
{{ WHEN selection-object-1 [ALSQ selection-object-2] } .. [imperative-statement-1] } ..
[WHEN OTHER imperative-statement-2]
[END-EVALUATE]

The EVALUATE statement provides a means of defining processing that should take place under a multitude of
conditions.

1. There must be at least one WHEN clause specified on any EVALUATE statement. There may also be multiple WHEN
clauses specified.

2. There must be at least one selection-subject specified on the EVALUATE statement itself. Syntax of a
The syntax of a selection-subject is shown to the right. selection-subject

3. Each selection subject will have its value matched against the corresponding selection object
value on every WHEN clause. TRUE
FALSE
4. The first WHEN clause having each of its selection-object(s) successfully matched by the expression-1
corresponding selection-subject on the EVALUATE statement will be the one whose identifier-1
imperative-statement-1 (if any) is executed. If the successfully matched WHEN clause does literal-1
not have its own imperative-statement-1 then the next imperative-statement-1 (on another

WHEN clause) following the WHEN that was matched will be executed.

5. If no WHEN clause has it's imperative-statement-1 executed, then the WHEN OTHER clause’s imperative-
statement-2 will be executed (if WHEN OTHER was specified).

6. Once imperative-statement-1 or imperative statement-2 is executed (or would have been executed if it existed),
control will proceed with the statement following the END-EVALUATE.

7. T:e syEtax of a selection-object is shown to Syntax of a selection-object
the right.

8. The reserved words THRU and THROUGH
may be used interchangeably. ANY
TRUE
9. When using THRU, the values on both sides FALSE
of the THRU must be the same class (both | partial-expression-1
numeric, both alphanumeric, etc.). .
expression-2 expression-3
10. A partial-expression is one of the following: identifier-2 THRU | THROUGH { identifier-3
a. A class-condition without a leading literal-2 literal-3
identifier-1

b. Asign-condition without a leading identifier-1
c. Arelation-condition with nothing to the left of the relational operator

11. In order for a selection-subject to match the corresponding selection-object on a WHEN clause, one of the following
must be true:

a. The selection-object is ANY
b. The value of the selection-subject is equal to the value of the selection object
c. The value of the selection-subject falls within the range specified by the THRU clause of the selection-object

d. If the selection-object is a partial-expression (see #10, above), then the true/false result that would be obtained
if the partial-expression is applied to the selection-subject must be true; this will be iollustrated in an upcoming
example

11FEB2012 Version 6-61

GNU COBOL 2.0 Programmers Guide

PROCEDURE DIVISION

Here is a sample program that illustrates the EVALUATE statement.

IDENTIFICATION DIVISION.
PROGRAM-ID. DEMOEVALUATE.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 Test-Digit PIC 9(1).
88 Digit-Is-Odd VALUE 1, 3, 5, 7, 9.
88 Digit-Is-Prime VALUE 1, 3, 5, 7.
PROCEDURE DIVISION.
P1. PERFORM UNTIL EXIT
DISPLAY "Enter a digit (@ Quits): "
WITH NO ADVANCING
ACCEPT Test-Digit
IF Test-Digit = @
EXIT PERFORM
END-IF
EVALUATE Digit-Is-Odd ALSO Digit-Is-Prime
WHEN TRUE ALSO FALSE
DISPLAY Test-Digit " is ODD"
WITH NO ADVANCING
WHEN TRUE ALSO TRUE
DISPLAY Test-Digit " is PRIME"
WITH NO ADVANCING
WHEN FALSE ALSO ANY
DISPLAY Test-Digit " is EVEN"
WITH NO ADVANCING
END-EVALUATE
EVALUATE Test-Digit

WHEN < 5

DISPLAY " and it’s small too"
WHEN < 8

DISPLAY " and it’s medium too"
WHEN OTHER

DISPLAY " and it’s large too"
END-EVALUATE
END-PERFORM
DISPLAY "Bye!"
STOP RUN

See Also...

Console output when run (user input is highlighted):

Enter a digit (@ Quits): 1

1 is PRIME and it’s small too
Enter a digit (@ Quits): 2

2 is EVEN and it’s small too
Enter a digit (© Quits): 3

3 is PRIME and it’s small too
Enter a digit (© Quits): 4

4 is EVEN and it’s small too
Enter a digit (© Quits): 5

5 is PRIME and it’s medium too
Enter a digit (© Quits): 6

6 is EVEN and it’s medium too
Enter a digit (@ Quits): 7

7 is PRIME and it’s medium too
Enter a digit (@ Quits): 8

8 is EVEN and it’s large too
Enter a digit (@ Quits): 9

9 is ODD and it’s large too
Enter a digit (@ Quits): o
Bye!

Class Tests 6.1.4.2.2

Relation Tests 6.1.8.2.5

Sign Tests 6.1.8.2.3

11FEB2012 Version

6-62

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

6.2.16. EXIT

Figure 6-53 - EXIT Syntax

The EXIT statement is a multi-purpose statement; it may provide a
PROGRAM common end point for a series of procedures, exit an inline PERFORM, a
MN paragraph or a section or it may mark the logical end of a subprogram.
EXIT PERFORM [CYCLE]
SECTION
PARAGRAPH

Figure 6-54 - Using the EXIT Statement

1. When used without any of the optional clauses,
the “EXIT” statement simply provides a common @1 Switches.) h 1)
“ ” . - 05 Input-Fi e-Switc PIC X(1).
QO TO enf:I point for a.serles of procedures. 88 EOF-On-Input-File VALUE Y’ FALSE ‘N’.
Figure 6-57 illustrates this usage of the EXIT

statement.
2. When an EXIT statement is used, it must be the SET EOF-On-Input-File TO FALSE.
only statement in the paragraph in which it occurs. PERFORM 160-Process-A-Transaction
THRU 199-Exit
3. The EXIT statement takes no other run-time UNTIL EOF-On-Input-File.
action. .

100-Process-A-Transaction.
READ Input-File AT END
SET EOF-On-Input-File TO TRUE
GO TO 199-Exit.
IF Input-Rec of Input-File = SPACES
GO TO 199-Exit. *> IGNORE BLANK RECORDS!

process the record just read
199-Exit.
EXIT.

4. An EXIT PARAGRAPH statement transfers control to a Figure 6-55 - Using EXIT PARAGRAPH

point immediately past the end of the current o1

Switches.
paragraph, while an EXIT SECTION statement causes 05 Input-File-Switch PIC X(1).
control to pass to point immediately past the last 88 EOF-On-Input-File VALUE ‘Y’ FALSE ‘N’.
paragraph in the current section.If the EXIT :
PARAGRAPH or EXIT SECTION resides in a paragraph .
within the scope of a procedural PERFORM, control will SET EOF-On-Input-File TO FALSE.
be returned back to the PERFORM for evaluation of PERFORM 100-Process-A-Transaction

any TIMES, VARYING and/or UNTIL clauses. It the EXIT UNTIL EOF-On-Input-File.

PARAGRAPH or EXIT SECTION resides outside the
scope of a procedural PERFORM, control simply

transfers to the first executable statement in the next 160-Process-A-Transaction.
. READ Input-File AT END
paragraph (EXIT PARAGRAPH) or section (EXIT SET EOF-On-Input-File TO TRUE
SECTION). EXIT PARAGRAPH.
IF Input-Rec of Input-File = SPACES
Figure 6-58 shows how the example shown in Figure EXIT PARAGRAPH. *> IGNORE BLANK RECORDS!
6-57 could have been coded without a GO TO by process the record just read

utilizing an EXIT PARAGRAPH statement.

5. The EXIT PERFORM and EXIT PERFORM CYCLE statements are intended to be used in conjunction with an inline
PERFORM statement.

6. An EXIT PERFORM CYCLE will terminate the current iteration of the inline PERFORM, giving control to any TIMES,
VARYING and/or UNTIL clauses for them to determine if another cycle needs to be performed.

11FEB2012 Version 6-63

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

Figure 6-56 - Using the EXIT PERFORM Statement

7. An EXIT PERFORM will terminate the inline

PERFORM outright, transferring control to the first PERFORM UNTIL EXIT

statement following the PERFORM. Figure 6-59 READ&;?”;:;}):MAT END

shows the final modification to the Figure 6-57 END-READ

example; by using Inline PERFORM and EXIT IF Input-Rec of Input-File = SPACES

PERFORM statements we can really streamline END-?F(IT PERFORM CYCLE *> IGNORE BLANK RECORDS!
processing.

process the record just read
END PERFORM

8. The EXIT PROGRAM and EXIT FUNCTION statements terminate the execution of a subroutine (i.e. a program that
has been CALLed by another) or user-defined function, respectively. An EXIT PROGRAM statement returns control
back to the statement following the CALL of the subprogram. An EXIT FUNCTION returns control back to the
processing of the statement in the calling program that invoked the user-defined function.

9. If executed by a main program, neither the EXIT PROGRAM nor EXIT FUNCTION statements are non-functional.
The EXIT PROGRAM statement is not legal anywhere within a user-defined function and EXIT FUNCTION cannot be
used anywhere within a subroutine. Neither may be used within a USE GLOBAL routine in DECLARATIVES.

10. The COBOL2002 standard has made a common extension to the COBOL language - the GOBACK statement — now a
standard language element; the GOBACK statement should be strongly considered as the preferred alternative to
EXIT PROGRAM and EXIT FUNCTION for new subprograms.

See Also...
Using DECLARATIVES 6.1.4 The PERFORM Statement (Procedural) 6.2.30.1
The CALL Statement 6.4.5 The PERFORM Statement (Inline) 6.4.30.2
The GOBACK Statement 6.2.19 Sub-programming 0
The GO TO Statement 6.2.20 Subprograms Subroutines vs Functions 7.1

11FEB2012 Version 6-64

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

6.2.17. FREE

Figure 6-57 - FREE Syntax

The FREE statement releases memory previously
FREE { [ADDRESS OF] identifier-1 } .. allocated to the program by the ALLOCATE statement.

1. Identifier-1 must be a USAGE POINTER data item or an 01-level data item with the BASED attribute.

2. Ifidentifier-1is a USAGE POINTER data item and it contains a valid address, the FREE statement will release the
memory block the pointer references. In addition, any BASED data items that the pointer was used to provide an
address for will become un-based and therefore un-usable. If identifier-1 did not contain a valid address, no action
will be taken.

3. [If identifier-1 is a BASED data item and that data item is currently based (meaning it currently has memory
allocated for it), its memory is released and identifier-1 will become un-based and therefore un-usable. If identifier-
1 was not based, no action will be taken.

4. The ADDRESS OF clause adds no special function to the FREE statement.

See Also...
Dynamically Allocated Items (BASED) 5.2.1.2 The ALLOCATE Statement 6.4.3

Storage Format of Data (USAGE) 5.2.1.11

11FEB2012 Version 6-65

GNU COBOL 2.0 Programmers Guide

PROCEDURE DIVISION

6.2.18. GENERATE

Figure 6-58 - GENERATE Syntax

Although syntactically recognized by the GNU COBOL
compiler, the GENERATE statement is non-functional
because the RWCS (COBOL Report Writer Control System)
is not currently supported by GNU COBOL.

GENERATE { report-name-1

identifier-1 }

11FEB2012 Version 6-66

GNU COBOL 2.0 Programmers Guide

PROCEDURE DIVISION

6.2.19. GOBACK

Figure 6-59 - GOBACK Syntax

GOBACK

The GOBACK statement is used to logically terminate an executing program.

1. If executed within a subprogram (i.e. a subroutine or user-defined function), GOBACK behaves like an EXIT
PROGRAM or EXIT FUNCTION statement, respectively.

2. If executed within a main program, GOBACK will act as a STOP RUN statement.

See Also...

The EXIT FUNCTION Statement

(o)}
N
[uny
(o)}

The STOP RUN Statement 6.4.42

The EXIT PROGRAM Statement

o
N
[uny
(o)}

Sub-programming 0

11FEB2012 Version

6-67

GNU COBOL 2.0 Programmers Guide

PROCEDURE DIVISION

6.2.20.GOTO

6.2.20.1. GO TO Format 1 - Simple GO TO

Figure 6-60 - Simple GO TO Syntax

GO TO procedure-name-1

This form of the GO TO statement unconditionally transfers control in a program
to the specified procedure-name-1.

1. |If procedure-name-1 is a section, control will transfer to the first paragraph in that section.

6.2.20.2. GO TO Format 2 - GO TO DEPENDING ON

Figure 6-61 — GO TO DEPENDING ON Syntax

GO TO procedure-name-1

DEPENDING ON identifier-1

This form of the GO TO statement will transfer control to any one of a
number of specified procedure names depending on the numeric value of

the identifier specified on the statement.

1. The PICTURE and/or USAGE of the specified identifier-1 must be such as to define it as a numeric, unedited,

preferably unsigned integer data item.

2. If the value of identifier-1 has the value 1, control will be transferred to the 1* specified procedure name. If the
value is 2, control will transfer to the 2" procedure name, and so on.

3. If the value of identifier-1 is less than 1 or exceeds the total number of procedure names specified on the GO TO
statement, control will simply fall thru into the next statement following the GO TO.

4. The following table shows how GO TO DEPENDING ON may be used in a real application situation, and compares it
against the two alternatives — IF and EVALUATE.

Figure 6-62 - GOTO DEPENDING ON vs IF vs EVALUATE

GOTO DEPENDING ON

GO TO PROCESS-ACCT-TYPE-1
PROCESS-ACCT-TYPE-2
PROCESS-ACCT-TYPE-3
DEPENDING ON ACCT-TYPE.
Code to handle invalid account type
GO TO DONE-WITH-ACCT-TYPE.
PROCESS-ACCT-TYPE-1.

Code to handle account type 1

GO TO DONE-WITH-ACCT-TYPE.
PROCESS-ACCT-TYPE-2.

Code to handle account type 2

GO TO DONE-WITH-ACCT-TYPE.
PROCESS-ACCT-TYPE-3.

Code to handle account type 3
DONE-WITH-ACCT-TYPE.

IF

IF ACCT-TYPE = 1
Code to handle account type 1
ELSE
IF ACCT-TYPE = 2
Code to handle account type 2
ELSE
IF ACCT-TYPE = 3
Code to handle account type 3
ELSE
Code to handle invalid
account type
END-IF
END-IF
END-IF

EVALUATE

EVALUATE ACCT-TYPE
WHEN 1

Code to handle account type 1
WHEN 2

Code to handle account type 2
WHEN 3

Code to handle account type 3
WHEN OTHER

Code to handle invalid account type
END-EVALUATE.

There is no question that “modern programming philosophy” would prefer the EVALUATE approach. An interesting
note is that the code generated by the IF and EVALUATE techniques is virtually identical.

See Also...

The EVALUATE Statement

s2ss | |

The IF Statement 6.2.21

11FEB2012 Version

6-68

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

6.2.21.IF

Figure 6-63 - IF Syntax

The IF statement is used to conditionally
execute an imperative statement or to select
one of two different imperative statements

[ELSE imperative-statement-2] based upon the TRUE/FALSE value of a

[END-IF] conditional expression.

IF conditional-expression THEN imperative-statement-1

1. If conditional-expression evaluates to true, imperative-statement-1 will be executed regardless of whether or not
an ELSE clause is present. Once imperative-statement-1 has been executed, control falls into the first statement
following the END-IF or to the first statement of the next sentence if there is no END-IF clause.

2. If the optional ELSE clause is present and conditional-expression-1 evaluates to false, then (and only then)
imperative-statement-2 will be executed. Once imperative-statement-2 has been executed, control falls into the
first statement following the END-IF or to the first statement of the next sentence if there is no END-IF clause.

3. The END-IF statement isn’t the only way the scope of an IF (or ELSE) can be terminated — the period character (.)
can be used also to terminate the IF/ELSE by ending the sentence in which it is coded.

See Also...
Conditional Expressions 6.1.8.2 ‘ ‘ Use of Periods (.) 6.1.5

11FEB2012 Version 6-69

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

6.2.22. INITIALIZE

Figure 6-64 - INITIALIZE Syntax

INITIALIZE identifier-1 .. [WITH FILLER]

ALL
category-name

} TO VALUE]

[THEN REPLACING { category-name DATA BY [LENGTH OF] { literal-1 } } o]

identifier-2
[THEN TO DEFAULT]

The INITIALIZE statement initializes each identifier-1 with certain specific values, depending upon the options specified.

1.

From the sequence of identifier-1 data items specified on the INITIALIZE statement, a list of initializable fields,
referred to as the field list in the remainder of this section, will include:

a.

b.

Every identifier-1 that is an elementary item.

Every identifier-1 that is a group item will have each elementary item defined anywhere within its full
hierarchical structure included, excluding FILLER items.

If the optional WITH FILLER clause is included on the INITIALIZE statement, then rule #1.b above will include
FILLER items.

Any identifier-1 containing a REDEFINES in its definition will be included in the field list, but items defined
subordinate to any identifier-1 that contain REDEFINES in their descriptions (and any items subordinate to them as
well) will be excluded.

A category-name may be any of the following:

ALPHABETIC The PICTURE of any ALPHABETIC data item only contains A symbols

ALPHANUMERIC The PICTURE of any ALPHANUMERIC data item contains only A, X and 9 symbols (but all

A symbols is considered ALPHABETIC and all 9 symbols is considered NUMERIC)

ALPHANUMERIC-EDITED The PICTURE of any ALPHANUMERIC-EDITED data item is that it is an ALPHANUMERIC

data item that also contains B, 0 (zero) and/or slash (/) symbols

NUMERIC A NUMERIC data item is one that is described with one of the pictureless USAGEs (see

Figure 5-10) or has a PICTURE composed of nothing but P, 9, S and V symbols.

NUMERIC-EDITED The PICTURE of any NUMERIC-EDITED data item is one that must have a PICTURE

clause in it’s definition, and that clause contains nothing but the symbol 9 and any
editing symbol defined in Figure 5-7.

The behavior of an INITIALIZE without a VALUE or REPLACING clause (either with or without a DEFAULT clause) will
be to move zeros into every numeric or numeric-edited data item (as defined above) in the field list and, SPACES
into all remaining fields in the initializable field list.

The behavior of an INITIALIZE with a VALUE and/or REPLACING clause will be as follows:

a.

If there is an “ALL TO VALUE” clause present then all data items in the field list having an explicit VALUE clause
coded in their description or having an implicit VALUE clause inherited from their parent group item will be
initialized to that compile-time value.

If there is a “category-name TO VALUE” clause present then all data items in the field list that fall into the
specified category (see the list above) and have either an explicit VALUE clause coded in their description or
have an implicit VALUE clause inherited from their parent group item will be initialized to that compile-time
value.

Any data items in the field list that get initialized by this rule will be excluded from the remaining rules.

11FEB2012 Version 6-70

GNU COBOL 2.0 Programmers Guide

PROCEDURE DIVISION

b. Ifthereis a “REPLACING” clause present, then all data items in the fields list that weren’t initialized by rule #4.a
and that fall into the specified category (see the list above) will be initialized to the value specified by literal-1
or identifier-2. You may specify multiple “category-name BY value” clauses, but each must specify a unique

category-name.

Any data items in the field list that get initialized by this rule will be excluded from the remaining rules.

c. Finally, if there are any data items in the field list that weren’t initialized either by rule #4.a or #4.b and there is
a DEFAULT clause present, those remaining data items will be initialized according to rule #3.

The following example may help your understanding of how the INITIALIZE statement works. The sample code makes
use of the COBDUMP program documented in section 10.2 to dump the storage that is (or is not) being INITIALIZEd.

IDENTIFICATION DIVISION.
PROGRAM-ID. DemoInitialize.
DATA DIVISION.
WORKING-STORAGE SECTION.

01 Item-1.
05 I1-A VALUE ALL '*'.
10 FILLER PIC X(1).
10 I1-A-1 PIC 9(1) VALUE 9.
05 I1-B USAGE BINARY-CHAR.
05 I1-C PIC A(1) VALUE 'C'.
05 I1-D PIC X/X VALUE 'Zz'.
05 I1-E OCCURS 2 TIMES PIC 9.
PROCEDURE DIVISION.
000-Main.

DISPLAY "MOVE HIGH-VALUES TO Item-1"
PERFORM 100-Init-Item-1
CALL "COBDUMP" USING Item-1
DISPLAY " "

DISPLAY "INITIALIZE Item-1"
INITIALIZE Item-1
CALL "COBDUMP" USING Item-1
PERFORM 100-Init-Item-1
DISPLAY " "

DISPLAY "INITIALIZE Item-1 WITH FILLER"
MOVE HIGH-VALUES TO Item-1
INITIALIZE Item-1 WITH FILLER
CALL "COBDUMP" USING Item-1
PERFORM 100-Init-Item-1
DISPLAY " "

DISPLAY "INITIALIZE Item-1 ALL TO VALUE"
MOVE HIGH-VALUES TO Item-1
INITIALIZE Item-1 ALPHANUMERIC TO VALUE
CALL "COBDUMP" USING Item-1
PERFORM 100-Init-Item-1
DISPLAY " ™

DISPLAY "INITIALIZE Item-1 REPLACING NUMERIC BY 1"
MOVE HIGH-VALUES TO Item-1
INITIALIZE Item-1 REPLACING NUMERIC BY 1
CALL "COBDUMP" USING Item-1
PERFORM 100-Init-Item-1
DISPLAY " ™

STOP RUN

100-Init-Item-1.
MOVE HIGH-VALUES TO Item-1

11FEB2012 Version

6-71

GNU COBOL 2.0 Programmers Guide

PROCEDURE DIVISION

When executed, this program produces the following output:

MOVE HIGH-VALUES TO Item-1
<-Addr-> Byte < Hexadecimal

00404058 1 FF FF FF FF FF FF FF FF FF

INITIALIZE Item-1
<-Addr-> Byte <-- Hexadecimal

00404058 1 FF 30 00 20 20 2F 20 30 30

INITIALIZE Item-1 WITH FILLER

Hexadecimal

00404058 1 20 30 00 20 20 2F 20 30 30

INITIALIZE Item-1 ALL TO VALUE
<-Addr-> Byte <-- Hexadecimal

00404058 1 2A 2A FF 43 5A 5A 20 FF FF

INITIALIZE Item-1 REPLACING NUMERIC BY 1
<-Addr-> Byte <-- Hexadecimal

00404058 1 FF 31 01 FF FF FF FF 31 31

11FEB2012 Version

6-72

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

6.2.23. INITIATE

Figure 6-65 - INITIATE Syntax

Although syntactically recognized by the GNU COBOL compiler, the INITIATE
INITIATE report-name-1 ... statement is non-functional because the RWCS (COBOL Report Writer
Control System) is not currently supported by GNU COBOL.

11FEB2012 Version 6-73

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

6.2.24. INSPECT

Figure 6-66 - INSPECT Syntax

The INSPECT statement is used to
perform various counting or data-

literal-1 alteration operations against strings.

INSPECT 1 identifier-1
function-1

TALLYING tallying-item .. REPLACING replacing-item ..
TALLYING tallying-item ...

REPLACING replacing-item ...

CONVERTING converting-item ..

Identifier-1 and literal-1 must be explicitly or implicitly defined as alphanumeric USAGE DISPLAY data. /dentifier-1
may be a group item. If function-1 is specified, it must be an invocation of an intrinsic function that returns a string
result. This is referred top as the inspect target.

A TALLYING clause will count the number of occurrences of a string of characters in the inspect target.

A REPLACING clause will convert occurrences of strings in the inspect target to different (equally-sized) strings (for
example, replacing all occurrences of “ABC” by “DEF”). The inspect target cannot be a literal or function result
when using REPLACING.

A CONVERTING clause will perform any number of single character replacements in the inspect target. The inspect
target cannot be a literal or function result when using CONVERTING.

If both TALLYING and REPLACING are specified on the same INSPECT statement, the effect will be as if two INSPECT
statements had been coded — the first performing the TALLYING and the second performing the REPLACING.

6.2.24.1. TALLYING Clause Syntax, Rules and Operation

The purpose of the TALLYING clause is to count how many occurrences of one or more strings appear within all or a
subset of the inspect target.

Each search string is specified using a single
tallying-item after the TALLYING keyword.

The syntax of a single tallying item is shown
to the right. ALL
1. Identifier-2 must be an unedited LEADING

numeric item. . o JRAILING

identifier-2 EOR A
. . f HARACTER [inspect-region-clause] ..

2. Identifier-3 and literal-2 must be literal-2

explicitly or implicitly defined as { S } [inspect-region-clause] ..

. identifier-3
alphanumeric USAGE DISPLAY data.

TALLYING tallying-item ... Format of a tallying-item

Identifier-3 may be a group item.

The inspect-region-clause(s) limit TALLYING processing to a specific subset of the inspect target. If no inspect-
region-clause is specified, the entire inspect target will be searched.

Identifier-2 may be specified in multiple tallying-items.

Identifier-2 will be incremented by 1 each time the target string being searched for is found within the specified
range of the inspect target. The target string will be:

a. Any single character if the CHARACTERS option is used; this form basically just counts total characters
b. ALL, all LEADING or all TRAILING occurrences of Identifier-3 or literal-2.

11FEB2012 Version 6-74

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

Figure 6-67 - An INSPECT TALLYING Example
Once an occurrence of the target

string is found and TALLYed, the
INSPECT TALLYING process will XX

resume from the end of the Inspect-ltem
found occurrence. This prevents
the possibility of counting
overlapping occurrences.

01 Inspect-Target PIC X(8) VALUE “XXXXXXXX”.
01 Double-X-Counter PIC 9(2).

The example shows an 8-

character item whose value is MOVE © TO Double-X-Counter
“XXXXXXXX” used as the object of INSPECT Inspect-Target
. TALLYING Double-X-Counter FOR ALL “XX*
an INSPECTITA!:LYING that is DISPLAY
|00klng fOr‘ XX occurrences: “Count:“ Double-X-Counter‘

END-DISPLAY

_ Generated

Only four (4) “XX” occurrences were found. Character positions 2-3, 4-5 and 6-7 — even though they are “XX”
occurrences — weren’t counted because they overlapped other occurrences.

6.2.24.2. REPLACING Clause Syntax, Rules and Operation

The purpose of the

REPLACING clause is to REPLACING replacing-item ... Format of a replacing-item

replace occurrences of

a substring within the

inspect target with a CHARACTERS

different substring of

the same length. If you ALL literal-4 i i

the same [ength. ITy LEADING { literal-3 } I BY identifier-5 [inspect-region-clause] ..
need to replace one or FIRST identifier-4

more substrings with TRAILING

others of a different

length, consider using

the SUBSTITUTE or SUBSTITUTE-CASE intrinsic function.

Each search and replace string is specified using a single replacing-item after the REPLACING keyword. The syntax of a
single replacing item is shown above.

1.

Identifier-4 and literal-3 (known as the target string) must be explicitly or implicitly defined as alphanumeric USAGE
DISPLAY data. /dentifier-4 may be a group item.

Identifier-5 and literal-4 (known as the replacement string) must be explicitly or implicitly defined as alphanumeric
USAGE DISPLAY data. /dentifier-5 may be a group item.

Identifier-4 / literal-3 must be the same length as identifier-5 / literal-4.

Target strings are identified as:

a. Any sequence of characters as long as the length of the replacement string if the CHARACTERS option is used
b. ALL, all LEADING, only the FIRST or all TRAILING occurrences of Identifier-4 or literal-3.

The inspect-region-clause(s) limit REPLACING processing of any one specific replacing-item to a specific region of
the inspect target. If no inspect-region-clause is specified, the entire inspect target will be processed. Different
replacing-items may have different regions specified.

REPLACING processing works as follows:

a. Processing begins with the first character of the inspect target an internal character pointer index to the first
character position.

b. If the internal character pointer is pointing past the end of the inspect target, REPLACING processing is
complete and the INSPECT statement will terminate.

11FEB2012 Version 6-75

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

c. Each replacing-item is checked, in the sequence in which they are coded on the INSPECT statement, looking for
one whose inspect-region-clauses allow its target-string to match the substring of the inspect target that
begins with the current character of that inspect target currently being pointed to.

d. If no replacing-items can match the inspect target from the current character position forward, the character
pointer is advanced by one and processing returns to rule #6.b.

e. If a match is found, that replacing-item’s replacement-string will replace the target-string in the inspect target
(starting at the current character position). If the replacing-item’s coding specified the FIRST option, that
replacing-item will be disabled for any further iterations during this execution of the INSPECT statement. The
current character pointer into the inspect target will be set to the first character following the replaced string
and processing returns to rule #6.b.

See Also...
‘ The SUBSTITUTE Intrinsic Function 6.1.14.77 ‘ ‘ The SUBSTITUTE-CASE Intrinsic Function 6.1.14.78

6.2.24.3. CONVERTING Clause Syntax, Rules and Operation

The purpose of the CONVERTING clause is
to perform a series of monocharacter CONVERTING converting-item Format of a converting-item
substitutions against a data item.

Each search and replace character { literal-5 } { literal-6
sequence is specified using a single identifier-6 identifier-7
converting-item after the CONVERTING
keyword. The syntax of a single converting
item is shown to the right.

} [inspect-region-clause] ..

1. Identifier-6, identifier-7, literal-5 and literal-6 must be explicitly or implicitly defined as alphanumeric USAGE
DISPLAY data. Identifier-6 and identifier-7, if used, may be group items.

2. Identifier-6 / literal-5 (the “from string”) should be the same length as identifier-7 / literal-6 (the “to string”). If they
aren’t:

a. Ifthe length of the from string exceeds the length of the to string, then the to string will be assumed to be
padded to the right with spaces to make them the same length.

b. If the length of the to string exceeds the length of the from string, then the to string will be assumed to be
truncated to the length of the from string.

3. Each character within the inspect target that lies within the range limits defined by the inspect-region-clause(s), if
any, will be searched for within the from string. If found, that inspect target character will be replaced by the to
string character that corresponds (by relative position) to the character found in the from string.

6.2.24.4. INSPECT Region Clause, Rules and Operation

The purpose of an inspect-region-clause is to restrict the operation of . .
a TALLYING, REPLACING or CONVERTING clause to a specific range of Format of an inspect-region-clause
characters within the inspect target.

If multiple inspect-region-clauses are specified, the effects of them as a
group will serve to define the range.

{ BEFORE

literal-7 }

} INITIAL { identifier-8

AFTER

1. Identifier-8 and literal-7 must be explicitly or implicitly defined as
alphanumeric USAGE DISPLAY data. I/dentifier-8 may be a group item. They may be of any length.

11FEB2012 Version 6-76

GNU COBOL 2.0 Programmers Guide

PROCEDURE DIVISION

The following example illustrates how a range clause works and how multiple range clauses can work together. It also
illustrates how COBOL syntax allows potentially complicated operations to be coded in an easy-to-understand manner.

IDENTIFICATION DIVISION.
PROGRAM-ID. DemoINSPECT.
DATA DIVISION.

WORKING-STORAGE SECTION.

01 Inspect-Target PIC X(100) VALUE
'THE QUICK BROWN FOX JUMPED OVER THE LAZY DOG ' &
'AND WAS BITTEN ON THE TAIL. THE FOX YELPED!'.

PROCEDURE DIVISION.
P1. DISPLAY "Before: " Inspect-Target
INSPECT Inspect-Target
REPLACING ALL "THE" BY "HIS"
AFTER INITIAL "BITTEN"
BEFORE INITIAL "."
DISPLAY "After: " Inspect-Target

When executed, this code produces the following console output (the change made by the INSPECT is highlighted):

Before: THE QUICK BROWN FOX JUMPED OVER THE LAZY DOG AND WAS BITTEN ON THE TAIL. THE FOX YELPED!
After: THE QUICK BROWN FOX JUMPED OVER THE LAZY DOG AND WAS BITTEN ON HIS TAIL. THE FOX YELPED!

11FEB2012 Version

6-77

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

6.2.25. MERGE

Figure 6-68 - MERGE Syntax

MERGE sort-file-1

oN { ASCENDING
{ DESCENDING

[WITH DUPLICATES IN ORDER]

} KEY identifier-1 .. } ..

[COLLATING SEQUENCE IS alphabet-name-1]
USING file-name-1 file-name-2

{ GIVING file-name-3 ... }
OUTPUT PROCEDURE IS procedure-name-1 [IHRU|IHROUGH procedure-name-2]

The MERGE statement merges two or more files that have each been pre-sorted on a set of specified identical keys.

1. The sort-file-1 named on the MERGE statement must be defined using a sort description (SD) in the FILE SECTION of
the DATA DIVISION. This file is referred to in the remainder of this discussion as the “merge work file”.

2. File-name-1, file-name-2 and file-name-3 (if specified) must reference ORGANIZATION LINE SEQUENTIAL or
ORGANIZATION RECORD BINARY SEQUENTIAL files. These files must be defined using a file description (FD) in the
FILE SECTION of the DATA DIVISION.

3. The identifier-1 ... field(s) must be defined as field(s) within a record of sort-file-1.

4. The WITH DUPLICATES IN ORDER clause is supported for compatibility purposes with other versions of COBOL, but
is non-functional in GNU COBOL

While any COBOL implementation’s SORT or MERGE facilities guarantee that records with duplicate key values will
be in proper sequence with regard to other records with different key values, they generally make no promises as
to the resulting relative sequence of records having duplicate key values with one another.

Some COBOL implementations provide this optional clause to force their SORT and MERGE facilities to retain
duplicate key-value records in their original input sequence, relative to one another.

GNU COBOL always behaves as if the WITH DUPLICATES IN ORDER clause is specified, even if it isn’t.

5. The record descriptions of file-name-1, file-name-2, file-name-3 (if any) and sort-file-1 are assumed to be identical
in layout and size. While the actual data names used for fields in these files’ records may differ, the structure of
records, PICTURE of fields, size of fields and USAGE of data should match field-by-field across all files.

A common programming technique when using the MERGE statement is to define the records of all files involved
on the MERGE as simple elementary items of the form “01 record-name PIC X(n).” where n is the record size. The
only file where records are actually described in detail would then be sort-file-1.

6. The following rules apply to the files named on the USING clause:
a. None of them may be OPEN at the time the MERGE is executed.

b. Each of those files is assumed to be already sorted according to the specifications set forth on the MERGE
statement’s KEY clause.

c. No two of those files may be referenced on a SAME RECORD AREA, SAME SORT AREA or SAME SORT-MERGE
AREA statement specified in the I-O-CONTROL paragraph.

7. Asthe MERGE begins execution, the first record in each of the USING files is read automatically.

8. Asthe MERGE statement executes, the current record from each of the USING files is examined and compared to
each other according to the rules set forth by the KEY clause. The record that should be “next” in sequence
(according to KEY) will be written to the merge work file and the USING file from which that record came will be
read so that its next record is available. As end-of-file conditions are reached on USING files, those files will be

11FEB2012 Version 6-78

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

10.
11.

12.

13.

14.

excluded from further MERGE processing — processing continues with the remaining USING files until all USING files
have been completely processed.

Once the merge work file has been populated, the merged data will be written to file-name-3 if the GIVING clause
was specified, or will be processed by utilizing an OUTPUT PROCEDURE.

When GIVING is specified, none of the file-name-3 ... files can be OPEN at the time the MERGE is executed.

When an OUTPUT PROCEDURE is used, the procedure(s) specified on the OUTPUT PROCEDURE clause will be
invoked as if by a procedural PERFORM statement with no VARYING or UNTIL options specified. Merged records
may be read from the merge work file — one at a time — within the OUTPUT PROCEDURE using the RETURN
statement.

A GO TO statement that transfers control out of the OUTPUT PROCEDURE will terminate the MERGE but allows the
program to continue executing from the point where the GO TO transferred control to. Once an OUTPUT
PROCEDURE has been aborted using a GO TO it cannot be resumed, and the contents of the merge work file are
lost. You may, however, re-execute the MERGE statement itself. USING A “GO TO” TO PREMATURELY TERMINATE
A MERGE, OR RE-STARTING A PREVIOUSLY-CANCELLED MERGE IS NOT CONSIDERED GOOD PROGRAMMING
STYLE AND SHOULD BE AVOIDED.

An OUTPUT PROCEDURE is terminated in the same way a procedural PERFORM would be. Usually, this action will
be taken once the RETURN statement indicates that all records in the merge work file have been processed, but
termination could occur at any time if required. Once the OUTPUT PROCEDURE terminates, the output phase —
and the MERGE statement itself - is complete.

Neither a Format-1 SORT nor another MERGE may be executed within the scope of the procedures comprising the
OUTPUT PROCEDURE unless those statements utilize a different sort or merge work file.

See Also...

»
N
N

The I-O-CONTROL Paragraph The OPEN Statement

o)}
»~
N
©

(2}
[N

o
N
w
o
N

Describing the Structure of a File (FD/SD) The PERFORM Statement (Procedural)

(o)}
N
w
wu

Defining a Data Item’s PICTURE The RETURN Statement

wu
N
e
(o))

()]
S
B
©
[EEN

Storage Format of Data (USAGE)

(9]
N
=
[y
=

The SORT Statement (File Sort)

The GO TO Statement

(o)}
N
N
o

11FEB2012 Version 6-79

GNU COBOL 2.0 Programmers Guide

PROCEDURE DIVISION

6.2.26. MOVE

6.2.26.1. MOVE Format 1 - Simple MOVE

Figure 6-69 - Simple MOVE Syntax

literal-1

identifier-1 } TO identifier-2 ..

MOVE {

This statement moves a specific value to one or more receiving
data items.

1. The MOVE statement will replace the contents of one or more receiving data items (identifier-2 ...) with a new value

—the one specified by literal-1 or identifier-1.

2. Only numeric data can be moved to a numeric identifier-2. A MOVE involving numeric data will perform any
necessary format conversions that might be necessary.

3. If identifier-1 is specified as the source for a MOVE, its contents will not be changedal.

6.2.26.2. MOVE Format 2 - MOVE CORRESPONDING

Figure 6-70 - MOVE CORRESPONDING Syntax

MOVE CORRESPONDING identifier-1 TOQ identifier-2 ..

This statement moves similarly-named items from one
group item to another.

1. The word CORRESPONDING may be abbreviated as CORR.

2. Both identifier-1 and identifier-2 must be group items.

3. When corresponding matches are established,

the effect of a MOVE CORRESPONDING on those matches will be as

if a series of individual MOVEs were done — one for each match.

See Also...

The CORRESPONDING Clause 6.1.12.2

31

Here’s an instance where COBOL'’s strong dependence on the English language can get the inexperienced

programmer into trouble — it probably would have been better for generations of beginning COBOL programmers if
this verb had been named “COPY” rather than MOVE, as the process of MOVEing data from one place to another
only affects the data items named after the “TO”.

11FEB2012 Version

6-80

GNU COBOL 2.0 Programmers Guide

PROCEDURE DIVISION

6.2.27. MULTIPLY

6.2.27.1. MULTIPLY Format 1 - MULTIPLY BY

Figure 6-71 - MULTIPLY BY Syntax

literal-1
identifier-1
[size-error-clause]

[END-MULTIPLY]

MULTIPLY { }B_Y { identifier-2 [rounding-option 1 } ..

1. Identifier-1 and identifier-2

must be numeric unedited
data items, each identifier-3
must be a numeric (edited or
unedited) data item and
literal-1 and literal-2 must be
numeric literals.

2. The product of identifier-1 or literal-1 and each identifier-2, in turn, will be computed and moved to each of the

identifier-2 data items, replacing its old contents.

3. The value of identifier-1 is not altered.

4. The optional “rounding-option” clause available to each identifier-2 will control how non-integer results will be

saved.

5. The optional size-error-clause may be used to detect arithmetic overflow situations where identifier-2 is
insufficiently sized to hold the generated results; this clause will also detect attempts to divide by zero.

See Also...

‘ Handling Size Errors (ON SIZE ERROR) 6.1.12.6 ‘ ‘

Rounding Options 6.1.12.7

6.2.27.2. MULTIPLY Format 2 - MULTIPLY GIVING

Figure 6-72 - MULTIPLY GIVING Syntax

MULTIPLY{ literal-1 } BY { literal-2 }

identifier-1 identifier-2
GIVING { identifier-3 [rounding-option] } ..
[size-error-clause]

[END-MULTIPLY]

1. [dentifier-1 and identifier-2

must be numeric unedited
data items, identifier-3
should be a numeric or
numeric-edited data item
and literal-1 must be a
numeric literal.

2. The product of identifier-1 or literal-1 and identifier-2 or literal-2 will be computed and moved to each of the

identifier-2 data item, replacing the old contents.

3. The optional “rounding-option” clause available to each identifier-3 will control how non-integer results will be

saved.

4. The optional size-error-clause may be used to detect arithmetic overflow situations where identifier-3 is
insufficiently sized to hold the generated results; this clause will also detect attempts to divide by zero.

See Also...

Handling Size Errors (ON SIZE ERROR) 6.1.12.6 ‘ ‘

Rounding Options 6.1.12.7

11FEB2012 Version

6-81

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

6.2.28. NEXT SENTENCE

Figure 6-73 - NEXT SENTENCE Syntax

The NEXT SENTENCE statement is a means of “breaking out” of a series of nested
NEXT SENTENCE “IF” statements.

1. The NEXT SENTENCE statement is valid only when used within the scope of an “IF” statement.
2. Asits name implies, this statement causes control to transfer to the next sentence in the program.

3. The NEXT SENTENCE statement is needed for COBOL programs that are coded according to pre-1985 standards.
Programs coded for 1985 (and beyond) standards don’t need it.

4. New GNU COBOL programs should be coded to use the END-IF scope terminator for IF statements, which
invalidates the use of NEXT SENTENCE in favor of the CONTINUE statement.

See Also...
Use of Periods () 615 | | The CONTINUE Statement 6.4.10

11FEB2012 Version 6-82

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

6.2.29. OPEN

Figure 6-74 - OPEN Syntax

The OPEN statement makes
INPUT one or more files described
OUTPUT in your program available for
OPEN { 1-0 [sharing-options] file-name-1 [open-options] } .. use.
EXTEND
sharing-options: open-options:
ALL OTHER REVERSED
SHARING WITH {1 NO OTHER NO REWIND
READ ONLY WITH { LOCK }

1. Any file defined in a GNU COBOL program must be successfully OPENed before it or any of it’s record descriptions
may be referenced on a CLOSE, DELETE, READ, REWRITE, START, UNLOCK or WRITE statement. Additionally, a file
must be successfully OPENed for any of its record data names (or data elements subordinate to those records) to
be referenced on any statement other than a MERGE or SORT.

2. Any attempt to OPEN a file that is already OPEN will fail with a FILE STATUS of 41 (“File Already OPEN"). This is a
fatal error that will terminate the program.

3. Any OPEN failure (including “File Already OPEN”) may be trapped using DECLARATIVES or an error procedure
established using the CBL_ERROR_PROC built-in subroutine. When either of these trap routines exit, however, the
GNU COBOL runtime system will terminate the program. Ultimately, you cannot recover from an OPEN failure.

4. The INPUT, OUTPUT, I-O and EXTEND options inform GNU COBOL of the manner in which you wish to use the file,

as follows:

OPEN Effect

Mode

INPUT You may only read the existing contents of the file - only the CLOSE, READ, START and UNLOCK

statements will be allowed.

OUTPUT You may only write new content (which will completely replace any previous file contents) to the file -
only the CLOSE, UNLOCK and WRITE statements will be allowed.

-0 You may perform any operation you wish against the file - all file I/O statements will be allowed.

EXTEND You may only write new content (which will be appended after any previously existing file content) to
the file - only the CLOSE, UNLOCK and WRITE statements will be allowed.

5. The SHARING clause informs GNU COBOL how you are willing to co-exist with any other GNU COBOL programs that
may attempt to OPEN the same file after your program does.

6. The WITH NO REWIND option on the OPEN statement is supported syntactically but is otherwise non-functional.
Note that the CLOSE statement (section 6.2.7) also has this option, which is supported by GNU COBOL.

Devices that would be capable of supporting a WITH NO REWIND clause (tape drives) are pretty rare in the
environments in which GNU COBOL is intended to operate, and only such a device will be responsive to the WITH
NO REWIND option.

7. The WITH LOCK option will be functional only if your GNU COBOL build can support it. GNU COBOL built for
MinGW or native Windows will not, because the Unix “fcntl() primitive doesn’t exist in those environments. GNU
COBOL built for Cygwin or Unix will.

8. The REVERSED option will be syntactically accepted, but a compilation specifying either the “-Wobsolete” or “-
Wall” options will yield a warning message that REVERSED is an obsolete feature.

11FEB2012 Version 6-83

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

See Also...
FILE-STATUS Values Figure The READ Statement 6.4.31
4-15 The REWRITE Statement 6.4.36
File Sharing 6.1.9.1 The SORT Statement (File Sort) 6.4.40.1
Record Locking 6.1.9.2 The START Statement 6.2.41
Using DECLARATIVES 6.1.4 The UNLOCK Statement 6.4.48
The CLOSE Statement 6.4.7 The WRITE Statement 6.4.50
The DELETE Statement 6.4.11 The CBL_ERROR_PROC Subroutine 8.3.1.24
The MERGE Statement 6.4.25

11FEB2012 Version 6-84

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

6.2.30. PERFORM

6.2.30.1. PERFORM Format 1 - Procedural

Figure 6-75 - Procedural PERFORM Syntax

PERFORM procedure-name-1 [THRU|THROUGH] procedure-name-2 |

[WITH TEST { BEFORE } {varying-clause }

AFTER UNTIL conditional-expression-1
| UNTIL EXIT|FOREVER

{ literal-1

} TIMES
identifier-1

varying clause:

) " literal-2 literal-3 } " .
VARYING identifier-2 FROM B UNTIL conditional-expression-2
f { identifier-3 } [BY { identifier-4] P
. o literal-4 literal-5 . .
AFTER identifier-5 EROM { } { . - } UNTIL conditional-expression-3
: f identifier-6 identifier-7] P]

This format of the PERFORM statement is used to transfer control to one or more procedures and to return control
when execution of the specified procedure(s) is complete. This invocation of the procedure(s) can be done a single
time, multiple times, repeatedly until a condition becomes TRUE or forever (with — presumably — some way of breaking
out of the control of the PERFORM or of hal;ting program execution within the procedure(s)).

1. The words THROUGH and THRU may be used interchangeably. Both procedure-name-1 and procedure-name-2
must be PROCEDURE DIVISION sections or paragraphs defined in the same program as the PERFORM statement. If
procedure-name-2 is specified, it must follow procedure-name-1 in the program’s source code. The scope of the
PERFORM is defined as being the statements within procedure-name-1, the statements within procedure-name-2
and all statements in all procedures defined between them.

2. Allidentifier-n entries shown must be elementary unedited numeric data items. All literal-n entries shown must be
numeric literals (or references to functions that return a numeric value.

Fi 6-76 - Simpl
3. Without the UNTIL, TIMES, VARYING or FOREVER clauses, the code within the scope of the IgursERFOR,V:mp ¢

PERFORM will be executed (once) and control will return to the statement following the PERFORM
PERFORM. See Figure 6-76. (Starts)

Y

Statements
within PERFORM
scope

Y
(PERFORM Ends)

11FEB2012 Version 6-85

GNU COBOL 2.0 Programmers Guide

PROCEDURE DIVISION

4. The UNTIL EXIT option will repeatedly execute the code within the scope of
the PERFORM with no conditions defined on the PERFORM statement itself
for termination of the repetition. It will be up to the programmer to include
an EXIT PERFORM within the scope of the PERFORM that will break out of the
loop.

5. The FOREVER option has the same effect as UNTIL EXIT.

PERFORM
Starts

Figure 6-77 -
PERFORM UNTIL EXIT

Y

scope

Statements
within PERFORM

EXIT

6. The TIMES option will repeat the execution of the code within the scope of the PERFORM a
fixed number of times. When the PERFORM statement is executed, the repeat count will
be set to the value of literal-1 or the value within identifier-1 at the time the PERFORM
begins execution. Once that number of repetitions has concluded, control will fall into

the next statement following the PERFORM**.

32

moment the PERFORM began executing.

11FEB2012 Version

PERFORM

PERFORM Ends

Figure 6-78 —
PERFORM n TIMES

PERFORM
Starts

Repeat countset
to literal-1or
identifier-1 value

v

Statements

Y

No

within PERFORM
scope

v

Repeat count
decremented by
1

Repeat
count=0?

PERFORM Ends

Changing the contents of identifier-1 within the scope of the PERFORM will have no effect on the repetition count, as that was determined the

6-86

GNU COBOL 2.0 Programmers Guide

PROCEDURE DIVISION

7. The “UNTIL conditional-expression-1" option will

repeat the code within the scope of the PERFORM until
the specified conditional expression evaluates to a TRUE

value.

8. The optional WITH TEST clause will control whether

UNTIL testing occurs BEFORE the scope of the PERFORM

is executed on each iteration or AFTER. The default, if
no WITH TEST clause is specified, is BEFORE.

9. The VARYING clause allows for the
definition of a data item (identifier-2)
that will have a unique numeric value
for each iteration of the execution of
the statements within the scope of
the PERFORM.

10. If a VARYING clause has been used,
you may also use any number of
additional AFTER clauses to create a
secondary loop situation where each
AFTER will create an additional series
of iterations, will define an additional
data item to be incremented during
each iteration and will define an
additional conditional expression to
define the termination of that series
of iterations. Functionally, this is
basically a way of nesting a
PERFORM VARYING within another
PERFORM VARYING without the
need to code multiple statements.

11. The flowchart in Figure 6-80 shows
how PERFORM VARYING (with an
AFTER clause too!) works in both
TEST BEFORE and TEST AFTER
modes.

11FEB2012 Version

Figure

WITH TEST BEFORE

PERFORM
Starts

conditional-
expression-

6-79 - PERFORM UNTIL
WITH TEST AFTER

PERFORM
Starts

Y

Statements
within PERFORM [«
scope

Statements
within PERFORM
scope

conditional-
expression-
1

Y

(PERFORMEnds)

Figure 6-80 - PERFORM VARYING AFTER
WITH TEST BEFORE

PERFORM
Starts

Initialize identifier-2
toits current FROM
value

v

Initialize identifier-5
to itscurrent FROM

Y

values

conditional-
expression-
2

conditional-
expression-
3

Statements
within PERFORM
scope
¢ Increment
Increment identifier-2
identifier-5 by its by its BY
BY value value

TRUE

A

WITH TEST AFTER

Color
PERFORM
Starts LEgend

i VARYING
Initialize identifier-2
to its current FROM

value

v

Initialize identifier-5

AFTER

to itscurrent FROM |«
values

v

Statements
within PERFORM <
scope

v

Increment
identifier-5 by its
BY value

conditional-
expression-
3

Increment
identifier-2
by its BY
value

conditional-
expression-
2

y

(PERFORM Ends)

6-87

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

Observe the following code which defines a two-

dimensional (3 row by 4 column) table and a pair of
numeric data items to be used to subscript references to PD(1,1) PD(1,2) PD(1,3) PD(1,4)
each element of the table:

PD(2,1) | PD(2,2) | PD(2,3) | PD(2,4)
01 PERFORM-DEMO.

05 PD-ROW OCCURS 3 TIMES.
10 PD-COL OCCURS 4 TIMES PD(3,1) | PD(3,2) | PD(3,3) | PD(3,4)
15 PD PIC X(1).
01 PD-Col-No PIC 9 COMP.
01 PD-Row-No PIC 9 COMP.
Let’s say we want to PERFORM a routine (100-Visit-Each-PD) which will —in turn — access
each PD data item in the sequence shown to the right. Here’s the PERFORM code: 1 2 3 4
PERFORM 100-Visit-Each-PD WITH TEST AFTER 5 6 7 8

VARYING PD-Row-No FROM 1 BY 1 UNTIL PD-Row-No
AFTER PD-Col-No FROM 1 BY 1 UNTIL PD-Col-No

3
4.

But, perhaps you needed to “visit” each PD in the sequence
1 4 7 |10 shown to the left. If so, then here’s the PERFORM you need:

2 5 8 11 PERFORM 100-Visit-Each-PD WITH TEST AFTER
VARYING PD-Col-No FROM 1 BY 1 UNTIL PD-Col-No
VARYING PD-Row-No FROM 1 BY 1 UNTIL PD-Row-No

3 6 19 |12

As a general rule of thumb, if you use WITH TEST AFTER on a PERFORM, the termination conditions specified on
VARYING and AFTER clauses should test the identifier being varied for being EQUAL TO the maximum value it should
receive. If you use WITH TEST BEFORE, the termination conditions specified on VARYING and AFTER clauses should test
the identifier being varied for being GREATER THAN the maximum value it should receive.

Thus, the two PERFORM examples shown above could have been coded this way:

PERFORM 100-Visit-Each-PD WITH TEST BEFORE
VARYING PD-Row-No FROM 1 BY 1 UNTIL PD-Row-No > 3
AFTER PD-Col-No FROM 1 BY 1 UNTIL PD-Col-No > 4.

-and —

PERFORM 100-Visit-Each-PD WITH TEST BEFORE
VARYING PD-Col-No FROM 1 BY 1 UNTIL PD-Col-No > 4
VARYING PD-Row-No FROM 1 BY 1 UNTIL PD-Row-No > 3.

See Also...

‘ Conditional Expressions 6.1.8.2 ‘

6.2.30.2. PERFORM Format 2 - Inline

11FEB2012 Version 6-88

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

Figure 6-81 - Inline PERFORM Syntax

PERFORM

AFTER UNTIL conditional-expression-1
| UNTIL EXIT|FOREVER

{ literal-1 }TIMES
identifier-1

[WITH TEST { BEFORE } {varying-clause }

[imperative-statement-1] ..

[END-PERFORM]

varying clause:

VARYING identifier-2 ERQM { literal-2 } [{ literal-3

ditional- jion-2
identifier-3 identifier-4 } 1 UNTIL conditional-expression

. i literal-4 literal-5 . .
AFTER identifier-5 EROM BY { . o } UNTIL conditional-expression-3
[f { identifier-6 } [identifier-7] P]

This format of the PERFORM statement is identical in operation to format 1, except for the fact that the statements that
comprise the scope of the PERFORM are now specified in-line with the PERFORM code rather than in procedures
located elsewhere within the program.

1. The various optional clauses have the same use and effect as in format 1 of the PERFORM statement.

2. The distinguishing characteristic of this format versus format 1 is that — with this version of the PERFORM

statement — the code being executed is specified in-line (imperative-statement-1 ...) rather than in one or more
separate procedures.

11FEB2012 Version 6-89

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

6.2.31. READ

6.2.31.1. READ Format 1 - Sequential READ

Figure 6-82 — READ (Sequential) Syntax

This form of the READ statement retrieves the next (or

NEXT previous) record from a file.

READ file-name-1 [
PREVIOUS

}] RECORD

[INTO identifier-1]

IGNORING LOCK
WITH LOCK

| WITH KEPT LOCK
WITH NO LOCK
WITH IGNORE LOCK
WITH WAIT

[at-end-clause]

[END-READ]

R

File-name-1 must currently be OPEN for INPUT or I-O.
If the ACCESS MODE of file-name-1 is RANDOM, this format of the READ statement cannot be used.
If the ACCESS MODE is SEQUENTIAL, this is the only format of READ that is available.

If the ACCESS MODE is DYNAMIC, this format of the READ statement may be used as well as format 2. The
following minimalist READ statement...

READ file-name-1

...is perfectly legal according to both READ formats. For that reason, when ACCESS MODE DYNAMIC has been
specified and you want to tell the GNU COBOL compiler that a statement such as the one above should be treated
as a sequential READ, you must add either NEXT or PRIOR to the statement (otherwise it will be treated as a
random READ).

The keywords NEXT and PREVIOUS specify in what direction of travel the reading process will take through the file.
If neither NEXT nor PREVIOUS clause is specified, NEXT is assumed.

The PREVIOUS option is available only for ORGANIZATION INDEXED files.

A successful sequential READ will retrieve the next available record from file-name-1, in either a “next” or
“previous” direction from the most-recently-READ record, depending upon the use of the NEXT or PREVIOUS
option. The newly-retrieved record data will be saved into the 01-level record structure(s) that immediately follow
the file’s FD or SD. If the optional INTO clause is present, a copy of the just-retrieved record will be automatically
MOVEd to identifier-1.

The optional LOCK options may be used to control access to the file by other programs while this program is
running.

The optional at-end-clause may be used to detect situations where all records in a file have been processed (known
as an end-of-file condition). Without using one of these clauses, a program would need to test the returned FILE
STATUS value after each READ.

See Also...
Types of Files 1.3.3.5 Describing the Structure of a File (FD/SD) 5.1
Defining File Characteristics (SELECT) 4.2.1 Record Locking 6.1.11.2
FILE-STATUS Values Figure Handling End-of-File Conditions (AT END) 6.1.12.1
41> The OPEN Statement ~ 6.4.29

11FEB2012 Version 6-90

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

6.2.31.2. READ Format 2 - Random Read

Figure 6-83 - READ (Random) Syntax

This form of the READ statement retrieves an arbitrary record from a

. ORGANIZATION RELATIVE or ORGANIZATION INDEXED file.
READ file-name-1 RECORD

[INTO identifier-1 1]

IGNORING LOCK
WITH LOCK

WITH KEPT LOCK
WITH NO LOCK
WITH IGNORE LOCK
WITH WAIT

[KEY IS identifier-2]

[invalid-key-clause]

[END-READ]

Eal

File-name-1 must currently be OPEN for INPUT or I-O.
If the ACCESS MODE of file-name-1 is SEQUENTIAL, this format of the READ statement cannot be used.
If the ACCESS MODE is RANDOM, this is the only format of READ that is available.

If the ACCESS MODE is DYNAMIC, this format of the READ statement may be used as well as format 1. The
following minimalist READ statement...

READ file-name-1

...is perfectly legal according to both READ formats. For that reason, when ACCESS MODE DYNAMIC has been
specified for a file, a READ statement such as the above will be automatically treated as a random READ.

The optional KEY clause tells the compiler how a record is to be located in the file.
If the KEY clause is absent:

If the file is an ORGANIZATION RELATIVE file, the contents of the field declared as the file’s RELATIVE KEY will
be used to identify a record. If the file is an ORGANIZATION INDEXED file, the contents of the field declared as
the file’s RECORD KEY (section will be used to identify a record.

If the KEY clause is specified:

If the file is an ORGANIZATION RELATIVE file, the contents of identifier-2 will be used as the relative record
number of the record to be accessed. Identifier-2 does not have to be the RELATIVE KEY field of the file
(although it could be if you wish). If the file is an ORGANIZATION INDEXED file, identifier-2 must be the
PRIMARY RECORD KEY or one of the file’s ALTERNATE RECORD KEY fields (if any) — the current contents of
that field will identify the record to be accessed. If an alternate record key is used, and that key allows
duplicate values, the record accessed will be the 1% one having that key value.

The record identified by rule #5 will be retrieved from file-name-1. The newly-retrieved record data will be saved
into the 01-level record structure(s) that immediately follow the file’s FD. If the optional INTO clause is present, a
copy of the just-retrieved record will be automatically MOVEd to identifier-1..

The optional LOCK options may be used to control access to the file by other programs while this program is
running.

11FEB2012 Version 6-91

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

8. The optional invalid-key-clause may be used to detect situations where the desired record cannot be read from the
file (most likely because no record exists with the specified RELATIVE KEY or RECORD KEY). Without using one of
these clauses, a program would need to test the returned FILE STATUS value after each READ.

See Also...
Types of Files 1.3.3.5 Describing the Structure of a File (FD/SD) 5.1
Defining File Characteristics (SELECT) 4.2.1 Handling Invalid Keys (INVALID KEY) 6.1.12.3
FILE-STATUS Values Figure The OPEN Statement 6.4.29
4-15

11FEB2012 Version 6-92

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

6.2.32. READY TRACE

Figure 6-84 - READY TRACE Syntax

The READY TRACE verb turns procedure or procedure+statement tracing on.
READY TRACE

1. This statement will cause procedure or procedure+statement tracing to be turned on.

2. Inorder for this statement to be functional, tracing code must have been generated into the compiled program
using either the “-ftrace” (procedures only) or “-ftraceall” (procedures + statements) compiler options.

3. Tracing may be turned off at any point by executing the RESET TRACE statement (section).
4. See the COB_SET_TRACE environment variable for another way to control tracing.

See Also...
The RESET TRACE Statement 6.4.34 Execution-time Environment Variables 8.2.4

Compiler Switches Reference 8.1.2

11FEB2012 Version 6-93

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

6.2.33. RELEASE

Figure 6-85 - RELEASE Syntax

The RELEASE statement adds a new record to a sort work
literal-1 } 1 file.

RELEASE d- -1 EROM
record-name-1 [{ identifier-1

1. The RELEASE statement is valid only within the INPUT PROCEDURE of a SORT statement.
2. Record-name-1 must be a record defined to a sort description (SD) entry.

See Also...
Describing the Structure of a File (FD/SD) 5.1 ‘ ‘ The SORT Statement (File Sort) 6.4.40.1

11FEB2012 Version 6-94

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

6.2.34. RESET TRACE

Figure 6-86 - RESET TRACE Syntax

The RESET TRACE verb turns procedure or procedure+statement tracing off.
RESET TRACE

1. This statement will cause procedure or procedure+statement tracing to be turned off.

2. By default, procedure and procedure+statement tracing is OFF as programs begin execution. Use the READY TRACE
statement (section to turn tracing on.

3. Inorder for this statement to be functional, tracing code must have been generated into the compiled program
using either the “-ftrace” (procedures only) or “-ftraceall” (procedures + statements) compiler options.

4. See the COB_SET_TRACE environment variable for another way to control tracing.

See Also...
The READY TRACE Statement 6.2.32 Execution-time Environment Variables 8.2.4

Compiler Switches Reference 8.1.2

11FEB2012 Version 6-95

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

6.2.35. RETURN

Figure 6-87 - RETURN Syntax

The RETURN statement reads a record from a sort- or merge work
RETURN sort-file-name-1 RECORD file.

[INTO identifier-1]

[at-end-clause]

[END-RETURN]

1. The RETURN statement is valid only within the OUTPUT PROCEDURE of a SORT or MERGE statement.
2. Sort-file-name-1 must be a sort- or merge work file defined with a sort description (SD) entry.

3. Asuccessful RETURN will retrieve the next available record from sort-file-name-1. The newly-retrieved record data
will be saved into the 01-level record structure(s) that immediately follow the file’s SD. If the optional INTO clause
is present, a copy of the just-retrieved record will be automatically MOVEd to identifier-1.

4. The optional at-end-clause may be used to detect situations where all sorted records have been RETURNed (known
as an end-of-file condition). Without using one of these clauses, a program would need to test the returned FILE
STATUS value after each RETURN.

See Also...
Describing the Structure of a File (FD/SD) 5.1 The MOVE Statement 6.2.26
Handling End-of-File Conditions (AT END) 6.1.12.1 The SORT Statement (File Sort) 6.4.40.1
The MERGE Statement 6.4.25

11FEB2012 Version 6-96

GNU COBOL 2.0 Programmers Guide

PROCEDURE DIVISION

6.2.36. REWRITE

Figure 6-88 - REWRITE Syntax

REWRITE record-name-1

[EROM {literal—l }]
identifier-1

[{ WITH LOCK } }
WITH NO LOCK
[invalid-key-clause]

[END-REWRITE]

The REWRITE statement replaces a logical record on a disk file.

1. Record-name-1 must be defined as an 01-level record subordinate to the File Description of a file that is currently

OPEN for I-0.

2. The optional FROM clause will cause literal-1 or identifier-1 to be implicitly MOVEd into record-name-1 prior to

writing record-name-1 to the file.

3. The REWRITE statement may not be used with ORGANIZATION IS LINE SEQUENTIAL files.

4. If the optional LOCK clause is omoitted, the effect will be as is WITH NO LOCK was coded — that is, the rewritten
record will not be locked against access by other programs.

5. Rewriting a record does not cause the record contents of the file to be physically updated until the next block of the
file is read, a COMMIT or UNLOCK statement is issued or that file is CLOSEd.

6. If the file has ORGANIZATION RECORD BINARY SEQUENTIAL:

a. Therecord to be rewritten will be the one retrieved by the most-recently executed READ of the file.

b. If the FD of the file contains the RECORD CONTAINS / RECORD IS VARYING clause and it allows record size to
vary, the size of record-name-1 cannot be altered.

7. If the file has ORGANIZATION RELATIVE or ORGANIZATION INDEXED:

a. Ifthe file has ACCESS MODE SEQUENTIAL, the record to be rewritten will be the one retrieved by the most-
recently executed READ of the file. If the file has ACCESS MODE RANDOM or ACCESS MODE DYNAMIC, no
READ is required before a record may be rewritten — the RELATIVE KEY / RECORD KEY definition for the file will

specify the record to be updated.

b. The size of record-name-1 may be updated.

8. The optional invalid-key-clause allows the program to detect and recover from attempts to rewrite non-existent

records.
See Also...
Types of Files 1.3.3.5 The COMMIT Statement 6.4.8
Describing the Structure of a File (FD/SD) 5.1 The MOVE Statement 6.2.26
Record Locking 6.1.9.2 The OPEN Statement 6.4.29
Handling Invalid Keys (INVALID KEY) 6.1.12.3 The READ Statement 6.4.31
The CLOSE Statement 6.4.7 The UNLOCK Statement 6.4.48
11FEB2012 Version 6-97

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

6.2.37. ROLLBACK

Figure 6-89 - ROLLBACK Syntax

The ROLLBACK verb reverts changes made to all files since the start of the program
ROLLBACK or since the last COMMIT.

1. GNU COBOL does not (currently, at least) support file rollback. The GNU COBOL ROLLBACK statement will have the
same effect as the COMMIT verb.

See Also...

The COMMIT Statement 6.4.8

11FEB2012 Version 6-98

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

6.2.38. SEARCH

6.2.38.1. SEARCH Format 1 - Sequential Search

Figure 6-90 - Sequential SEARCH Syntax

The SEARCH statement is used to
sequentially search a table, stopping
either once a specific value is located
[VARYING index-name-1] within the table or when the table has
been completely searched.

SEARCH table-name-1

[AT END imperative-statement-1 |
{ WHEN conditional-expression-1 imperative-statement-2 } ..

[END-SEARCH]

1. The index-name-1 identifier specified on the VARYING clause must be USAGE INDEX.

2. If no VARYING clause is specified, then the table being searched must have been created with an INDEXED BY
clause.

3. At the time the SEARCH statement is executed, the current value of index-name-1 (or the table’s defined INDEXED
BY index if no VARYING clause is specified) will define the starting position in the table where the searching process
will begin. Typically, one initializes that index to a value of 1 before starting the SEARCH, as follows:

SET index-name-1 TO 1

4. During the searching process, the conditional-expression-1 will be evaluated and — if TRUE — will cause imperative-
statement-2 to be executed, after which control will fall into the next statement after the SEARCH.

5. If multiple WHEN clauses exist, each conditional-expression-n will be evaluated in-turn and the first one that
evaluates to TRUE will cause the corresponding imperative-statement-n to be executed, after which control will fall
into the next statement after the SEARCH.

6. If no conditional-expression-n evaluates to TRUE, the value of index-name-1 will be incremented to p[oint to the
next entry in the table. If the value of index-name-1 is still within the OCCURS scope of table-name-1, the WHEN
clause(s) will again be re-evaluated. This process will continue until a WHEN clause conditional-expression-n
evaluates to TRUE or until the value of index-name-1 is no longer within the OCCURS scope of table-name-1.

7. If no conditional-expression-n ever evaluates to TRUE and the value of index-name-1 is no longer within the
OCCURS scope of table-name, the imperative-statement-1 which is part of the AT END clause will be executed.
After this, control will fall into the next statement following the SEARCH. If there is no AT END clause, control
simply falls into the next statement following the SEARCH.

See Also...
Defining Tables (OCCURS) 0 The SET index Statement 6.2.39.4

Storage Format of Data (USAGE) 5.2.1.11

11FEB2012 Version 6-99

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

6.2.38.2. SEARCH Format 2 - Binary, or Half-interval Search (SEARCH ALL)

Figure 6-91 - Binary SEARCH (ALL) Syntax

This format of the SEARCH statement
performs a binary, or half-interval, search
SEARCH ALL fable-name-1 against a sorted table.
[AT END imperative-statement-1 |

WHEN conditional-expression-1 imperative-statement-2

[END-SEARCH]

1. The definition of table-name-1 must include the OCCURS, ASCENDING (and/or DESCENDING) KEY and INDEXED BY
clauses.

2. Inorder for a table to be searchable via the SEARCH ALL statement, each of the following must be true:
a. The table meets the requirements of rule #1 above.

b. Just because the table has one or more KEY clauses doesn’t mean the data is actually in that sequence in the
table — the actual sequence of the data must agree with the KEY cIause(s)!?’3

c. No two records in the table may have the same KEY field values. If the table has multiple KEY definitions, then
no two records in the table may have the same combination of KEY field values.

If rule “a” is violated, the compiler will reject the SEARCH ALL. If rules “b” and/or “c” are violated, there will be no
message issued by the compiler, but the run-time results of a SEARCH ALL against the table will probably be
incorrect.

The conditional-expression-1 should involve the KEY fields, using the table’s INDEXED BY index name as a subscript.
The WHEN clause is mandatory, unlike format 1 of the SEARCH statement.

There can only be one WHEN clause specified.

S

The function of the WHEN is to compare the key field(s) of the table, as indexed by the table’s INDEXED BY index
data item, against whatever literal and/or identifier values you are searching for in order to locate the desired entry
in the table. The table’s index will be automatically varied by the SEARCH ALL statement in a manner designed to
require the minimum number of tests.

7. The internal processing of the SEARCH ALL statement begins by setting internal “first” and “last” pointers to the 1
and last entry locations of the table. Processing then proceeds as follows™:

a. The entry half-way between “first” and “last” is identified. We'll call this the “current” entry, and will set its
table entry location into index-name-1.

b. The WHEN is evaluated. This comparison of the key(s) against the target literal/identifier values will have one
of three possible outcomes:

i. Ifthe key(s) and value(s) match, imperative-statement-2 is executed, after which control falls thru into the
next statement following the SEARCH ALL.

ii. If the key(s) are LESS THAN the value(s), then the table entry being searched for can only occur in the
“current” to “last” range of the table, so a new “first” pointer value is set (it will be set to the “current”
pointer).

iii. If the key(s) are GREATER THAN the value(s), then the table entry being searched for can only occur in the
“first” to “current” range of the table, so a new “last” pointer value is set (it will be set to the “current”
pointer).

3 0Of course, if the data sequence doesn’t agree with the KEY clause, you can easily make it that way using a table SORT

* Thisisa simplified view of the algorithm intended purely as a pedagogical tool — an actual implementation of it requires a few

additional picky little details to make it work (such as what to do when rule “a” identifies a “current” entry of 12.5!)

11FEB2012 Version 6-100

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

c. Ifthe new “first” and “last” pointers are different than the old “first” and “last” pointers, there’s more left to
be searched, so return to step “a” and continue.

d. If the new “first” and “last” pointers are the same as the old “first” and “last” pointers, the table has been
exhausted and the entry being searched for cannot be found; imperative-statement-1 is executed, after which
control falls thru into the next statement following the SEARCH ALL. If there is no AT END clause coded,
control simply falls into the next statement following the SEARCH ALL.

The net effect of the above algorithm is that only a fraction of the number of elements in the table need ever be
tested in order to decide whether or not a particular entry exists. This is because the SEARCH ALL discards half the
remaining entries in the table each time it checks an entry.

Computer scientists will compare these two search techniques as follows:

» A sequential search (format 1) will need an average of n/2 tests and a worst case of n tests in order to find an
entry and n tests to identify that an entry doesn’t exist (n = the number of entries in the table).

» A binary search (format 2) will need worst case of log,n tests in order to find an entry and log,n tests to identify
that an entry doesn’t exist (n = the number of entries in the table).

Here’s a more practical view of the difference. Let’s say that a table has 1,000 entries in it. With a sequential
(format 1) search, on average, you’ll have to check 500 of them to find an entry and you’ll have to look at all 1,000
of them to find that an entry doesn’t exist. With a binary search, express the number of entries as a binary number
(1,000, =1111101000,) and count the number of digits in the result (10) -THAT is the worst-case humber of tests
required to find an entry or to identify that it doesn’t exist. That’s quite an improvement!

See Also...
Defining Tables (OCCURS) 0 The SORT Statement (Table Sort) 6.4.40.2

Storage Format of Data (USAGE) 5.2.1.11

11FEB2012 Version 6-101

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

6.2.39. SET
6.2.39.1. SET Format 1 - SET ENVIRONMENT

Figure 6-92 - SET ENVIRONMENT Syntax

A SET ENVIRONMENT statement provides a straight-
literal-1 } { literal-2 } forward means of setting environment values from

ET ENVIRONMENT rerat TS
SEL { identifier-1 identifier-2 within a program.

1. Environment variables created or changed from within GNU COBOL programs will be available to any sub-shell
processes spawned by that program (i.e. CALL “SYSTEM”) but will not be known to the shell or console window that
started the GNU COBOL program.

2. This is a much simpler and more readable means of setting environment variables than by using the DISPLAY
statement. For example, these two code sequences produce identical results:

DISPLAY SET ENVIRONMENT “VARNAME” TO “VALUE”
“VARNAME” UPON ENVIRONMENT -NAME

END-DISPLAY

DISPLAY
“VALUE” UPON ENVIRONMENT-VALUE

END-DISPLAY

See Also...
| The DISPLAY Statement (Environment) 6.2.12.3 |

6.2.39.2. SET Format 2 - SET Program-Pointer

Figure 6-93 - SET Program Pointer Syntax

This form of SET allows you to retrieve the address of a
literal-1 } PROCEDURE DIVISION code module — specifically a

SET program-pointer-1 10 ENTRY { identifier-1 declared entry-point into the PROCEDURE DIVISION.

1. If you have used other versions of COBOL before (particularly mainframe implementations), you’ve possibly seen
subroutine CALLs made passing a PROCEDURE DIVISION paragraph or SECTION name as an argument — that is not
possible in GNU COBOL; instead, you need to know how to use this form of the SET statement.

2. The USAGE of program-pointer-1 must be PROGRAM-POINTER.

3. The literal-1 or identifier-1 value specified must name a primary entry-point name (PROGRAM-ID of a subroutine or
FUNCTION-ID of a user-defined function) or an alternate entry-point defined via an ENTRY statement within a
subprogram.

4. Once the address of a PROCEDURE DIVISION code area has been acquired in this way, the address could be passed
to a subroutine (usually written in C) for whatever use it needs it for. For examples of PROGRAM-POINTERS at work,
see the discussions of the CBL_ERROR_PROC and CBL_EXIT_PROC built-in subroutines.

See Also...
Storage Format of Data (USAGE) 5.2.1.11 The CBL_ERROR_PROC Subroutine 8.3.1.24

The ENTRY Statement 6.2.14 The CBL_EXIT_PROC Subroutine 8.3.1.25

6.2.39.3. SET Format 3 - SET ADDRESS

11FEB2012 Version 6-102

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

Figure 6-94 - SET ADDRESS Syntax

This form of the SET statement can be used to work with
pointer-name-1 } the addresses of data items rather than their contents.

ET ADDRE F
SET [ADDRESS OF] { identifier-1

TO [ADDRESS OF] { pointer—name-Z}
identifier-2

1. When the ADDRESS OF clause is used before the TO you will be using the SET to alter the address of a LINKAGE
SECTION or BASED data item. Without that clause you will be assigning an address to one or more USAGE POINTER
data items.

2. When the ADDRESS OF clause is used after the TO, SET will be identifying the address of identifier-2 as the address
to be assigned to identifier-1 or stored in pointer-name-1. If the “ADDRESS OF” clause is absent after the TO, the
contents of pointer-name-2 will serve as the address to be assigned.

See Also...
The DATADIVISION 5 ‘ Storage Format of Data (USAGE) 5.2.1.11

Dynamically Allocated Items (BASED) 5.2.1.2

6.2.39.4. SET Format 4 - SET Index

Figure 6-95 - SET Index Syntax

This SET statement assigns a value to a USAGE INDEX data item.

literal-1
SET index- -1 10
Inaex-name _{ identifier-1 }

1. The USAGE of index-name-1 should be INDEX, or index-name-1 must be identified in a table INDEXED BY clause.

See Also...
‘ Defining Tables (OCCURS) 0 ‘ ‘ Storage Format of Data (USAGE) 5.2.1.11

6.2.39.5. SET Format 5 - SET UP/DOWN

Figure 6-96 - SET UP/DOWN Syntax

This format of SET is used to increment or decrement the

value of an index or pointer by a specified amount.
ET identifier-1 { ue } P yase
DOWN
BY [LENGTH OF] { literal-1 }
T identifier-2

1. The USAGE of identifier-1 must be INDEX, POINTER or PROGRAM-POINTER.

2. The typical usage when identifier-1 is a USAGE INDEX data item is to increment it’s value UP or DOWN by 1, since
an INDEX is usually being used to sequentially walk through the elements of a table.

See Also...
Defining Tables (OCCURS) 0 ‘ ‘ Storage Format of Data (USAGE) 5.2.1.11

11FEB2012 Version 6-103

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

6.2.39.6. SET Format 6 - SET Condition Name

Figure 6-97 - SET Condition Name Syntax

This format provides one method of specifying the TRUE /

SET diti 1 T0 { TRUE } FALSE value of a level-88 condition name.
SET { condition-name-1 } .. 10 _FAL e

1. By setting the specified condition name(s) to a TRUE or FALSE value, you will actually be assigning a value to the
parent data item(s) to which the condition name data item(s) is subordinate to.

2. When specifying TRUE, the value assigned to each parent data item will be the first VALUE specified on the
condition name’s definition.

3. When specifying FALSE on the SET, the value assigned to each parent data item will be the value specified for the
FALSE clause of the condition name’s definition; if any condition-name-1 occurrence lacks a FALSE clause, the SET
statement will be rejected by the compiler.

See Also...

‘ Defining Level-88 Condition Names 5.2.7 ‘

6.2.39.7. SET Format 7 - SET Switch

Figure 6-98 - SET Switch Syntax

Use this SET statement type to turn a switch ON or OFF.

. ON
SET { mnemonic-name-1 } .. L){ Dﬂ:}

1. Switches are defined using the SPECIAL-NAMES paragraph.
2. Switches may be tested via the IF statement and a switch-status condition.

See Also...
The SPECIAL-NAMES Paragraph 4.1.4 ‘ The IF Statement 6.2.21

Switch-Status Conditions 6.1.4.2.4

6.2.39.8. SET Format 8 - SET ATTRIBUTE

Figure 6-99 - SET ATTRIBUTE Syntax The SET ATTRIBUTE statement may be used to

modify one or more attributes of a SCREEN

BELL SECTION data item at run-time.

BLINK

HIGHLIGHT
LEFTLINE

SET identifier-1 ATTRIBUTE - LOWL IGHT H {

OVERLINE

REVERSE -VIDEO

UNDERLINE

SR
—_—

1. When making an attribute change to identifier-1, the change will not become visible on the screen until the SCREEN
SECTION data item containing identifier-1 is next ACCEPTed (if identifier-1 is an input field) or is next DISPLAYed (if
identifier-1 is not an input field).

See Also...
The DISPLAY Statement (Screen Data) 6.4.12.4

U
N
[N}

Defining Screens

The ACCEPT Statement (Screen Data)

o
S
o
S

11FEB2012 Version 6-104

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

6.2.40. SORT
6.2.40.1. SORT Format 1 - File-based Sort

Figure 6-100 - File-Based SORT Syntax

This format
SORT ile-1 of the SORT
SORT sort-file- statement
ASCENDING . . is designed
{ ON { DESCENDING } KEY identifier-1 .. } .. to sort large
I f
[WITH DUPLICATES IN ORDER] :;z;;meso
[COLLATING SEQUENCE IS alphabet-name-1] according
tooneor
{ USING file-name-1 .. } ;n (:crje o
INPUT PROCEDURE IS procedure-name-1 [IHRU|THROUGH procedure-name-2] 1elas.
GIVING file-name-2 ..
OQUTPUT PROCEDURE IS procedure-name-3 [THRU|THROUGH procedure-name-4]

1. The sort-file-1 named on the SORT statement must be defined using a sort description (SD) in the FILE SECTION of
the DATA DIVISION. This file is referred to as the “sort work file”.

2. |If specified, file-name-1 and file-name-2 must reference ORGANIZATION LINE SEQUENTIAL or ORGANIZATION
RECORD BINARY SEQUENTIAL files. These files must be defined using a file description (FD) in the FILE SECTION of
the DATA DIVISION. The same file(s) may be used for file-name-1 and file-name-2.

3. The identifier-1 ... field(s) must be defined as field(s) within a record of sort-file.

4. The WITH DUPLICATES IN ORDER clause is supported for compatibility purposes with other versions of COBOL, but
is non-functional in GNU COBOL

While any COBOL implementation’s SORT or MERGE facilities guarantee that records with duplicate key values will
be in proper sequence with regard to other records with different key values, they generally make no promises as
to the resulting relative sequence of records having duplicate key values with one another.

Some COBOL implementations provide this optional clause to force their SORT and MERGE facilities to retain
duplicate key-value records in their original input sequence, relative to one another.

GNU COBOL always behaves as if the WITH DUPLICATES IN ORDER clause is specified, even if it isn’t.
5. Asort work file (see #1) is never OPENed or CLOSEd.
6. The SORT statement works in three stages, as follows:

STAGE I (the input phase):

a. The data to be sorted is loaded into the sort file. This is accomplished either by taking the entire contents of
the file(s) named on the USING clause or by utilizing an INPUT PROCEDURE defined as procedure-name 1 or
procedure-name-1 THRU procedure-name-2.

b. When USING is specified, file-name-1 ... must not be OPEN at the time the SORT is executed.

c. When an INPUT PROCEDURE is used, the procedure(s) specified on the INPUT PROCEDURE clause will be
invoked as if by a procedural PERFORM statement with no VARYING or UNTIL options specified. Records will
be loaded into the sort work file — one at a time — within the INPUT PROCEDURE using the RELEASE statement.

11FEB2012 Version 6-105

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

As data is loaded into the sort file, it is actually being buffered in dynamically-allocated memory. Only if the
amount of data to be sorted exceeds the amount of available sort memory (128 MB)35 will actual disk files be
allocated and utilized. These “sort work files” will be discussed again shortly.

A GO TO statement that transfers control out of the INPUT PROCEDURE will terminate the SORT but allows the
program to continue executing from the point where the GO TO transferred control to. Once an INPUT
PROCEDURE has been aborted using a GO TO it cannot be resumed, and the contents of the sort work file are
lost. You may, however, re-execute the SORT statement itself. USING A “GO TO” TO PREMATURELY
TERMINATE A SORT, OR RE-STARTING A PREVIOUSLY-CANCELLED SORT IS NOT CONSIDERED GOOD
PROGRAMMING STYLE AND SHOULD BE AVOIDED.

An INPUT PROCEDURE is terminated in the same way a procedural PERFORM would be. Once the INPUT
PROCEDURE terminates, the input phase is complete.

d. The scope of the INPUT PROCEDURE must not allow a file-based SORT, MERGE or RETURN statement to be
executed.

STAGE 2 (the sort phase):

a. The sort will take place by arranging the data records in the sequence defined by the ASCENDING KEY and/or

DESCENDING KEY specification(s) on the SORT statement according to the COLLATING SEQUENCE specified on
the SORT (if any) or —if none was defined — the PROGRAM COLLATING SEQUENCE specified or implied by the
OBJECT-COMPUTER paragraph. Keys may be any supported data type and USAGE except for level-78 or level-
88 data items.

For example, let’s assume we’re sorting a series of financial transactions. The SORT statement might look like
this:

SORT Sort-File
ASCENDING KEY Transaction-Date
ASCENDING KEY Account-Number
DESCENDING KEY Transaction-Amount

The effect of this statement will be to sort all transactions into ascending order of the date the transaction took
place (oldest first, newest last). Unless the business running this program is going out of business, there are
most-likely many transactions for any given date — therefore, within each grouping of transactions all with the
same date, transactions will be sub-sorted into ascending sequence of the account number the transactions
apply to. Since it’s quite possible there might be multiple transactions for an account on any given date, a third
level sub-sort will arrange all transactions for the same account on the same date into descending sequence of
the actual amount of the transaction (largest first, smallest last). If two or more transactions of $100.00 were
recorded for account #12345 on the 31 of August 2009, those transactions will be retained in the order in
which they were read from the USING file(s) or were RELEASEd to the SORT.

Stage 3 (the output phase):

a.

Once the sort phase is complete, a copy of the sorted data will be written to each file-name-2 if the GIVING
clause was specified. When GIVING is specified, none of the file-name-2 files can be OPEN at the time the
SORT is executed.

When an OUTPUT PROCEDURE is used, the procedure(s) specified on the OUTPUT PROCEDURE clause will be
invoked as if by a procedural PERFORM statement with no VARYING or UNTIL options specified. Records will
be retrieved from the sort work file — one at a time and in sorted sequence — within the INPUT PROCEDURE
using the RETURN statement.

A GO TO statement that transfers control out of the OUTPUT PROCEDURE will terminate the SORT but allows
the program to continue executing from the point where the GO TO transferred control to. Once an OUTPUT
PROCEDURE has been aborted using a GO TO it cannot be resumed. You may, however, re-execute the SORT

35

There is a runtime environment variable (COB_SORT_MEMORY) that you may use to allocate more or less memory to the

sorting process. See section 8.2.4.

11FEB2012 Version 6-106

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

statement itself. USING A “GO TO” TO PREMATURELY TERMINATE A SORT, OR RE-STARTING A PREVIOUSLY-
CANCELLED SORT IS NOT CONSIDERED GOOD PROGRAMMING STYLE AND SHOULD BE AVOIDED.

c. Once the OUTPUT PROCEDURE terminates, the output phase —and the SORT statement itself - is complete.
Any sorted records that have not yet been RETURNed from the sort work file will be lost.

d. The scope of the OUTPUT PROCEDURE must not allow a file-based SORT, MERGE or RELEASE.

Should disk work files be necessary due to the amount of data being sorted, they will be automatically allocated to
disk in a folder defined by the TMPDIR, TMP or TEMP environment variables (checked for existence in that
sequence). These disk files will be automatically purged upon SORT termination or program execution termination
(normal or otherwise).

See Also...
Types of Files 1.3.3.5 The MERGE Statement 6.4.25
The OBJECT-COMPUTER Paragraph 4.1.2 The OPEN Statement 6.4.29
Describing the Structure of a File (FD/SD) 5.1 The RELEASE Statement 6.2.33
Defining Data Items 5.2 The RETURN Statement 6.2.35
Storage Format of Data (USAGE) 5.2.1.11 Execution-time Environment Variables 8.2.4
The CLOSE Statement 6.4.7

6.2.40.2. SORT Format 2 - Table Sort

Figure 6-101 - Table SORT Syntax

This format of the SORT statement sorts relatively
small quantities of data — namely data contained in
a DATA DIVISION table — according to one or more
key fields.

SORT table-name-1

ASCENDING

[ON { DESCENDING} KEY identifier-1 ..] ..

[WITH DUPLICATES IN ORDER]

[COLLATING SEQUENCE IS alphabet-name-1]

The table-name-1 data item must have an OCCURS clause in its definition.
The identifier-1 ... field(s), if any, must be defined as data items subordinate to table-name-1.

The WITH DUPLICATES IN ORDER clause is supported for compatibility purposes, but is non-functional. See the
discussion of this clause in the previous section for more information.

The data within table-name-1 will be sorted in-place (i.e. no sort file is required) according to the KEY
specification(s) made on the SORT statement.

Although the specification of KEY clause(s) is optional®®, currently, a table SORT with no KEY specification(s) made
on the SORT statement is unsupported by GNU COBOL and will be rejected by the compiler.

The sort will take place by arranging the data records in the sequence defined by the ASCENDING KEY and/or
DESCENDING KEY specification(s) on the SORT statement according to the COLLATING SEQUENCE specified on the
SORT (if any) or —if none was defined — the PROGRAM COLLATING SEQUENCE specified or implied by the OBJECT-
COMPUTER paragraph. Keys may be any supported data type and USAGE except for level-78 or level-88 data
items.

The SORT will be performed in-place within table-name-1 — no sort file is required.

36

When lacking a KEY clause, according to the COBOL2002 standards, a table sort will use the table’s KEY clause

11FEB2012 Version 6-107

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

6.2.41. START

Figure 6-102 - START Syntax

START file-name-1

IS EQUAL TO | IS = | EQUALS
IS GREATER THAN | IS >
KEY IS { IS GREATER THAN OR EQUAL TO | IS >= | IS NOT LESS THAN [identifier-1
IS LESS THAN | IS <
IS LESS THAN OR EQUAL TO | IS <= | IS NOT GREATER THAN

[invalid-key-clause]

[END-START]

The START statement defines the logical starting point within a file for subsequent sequential read operations.

1.
2.
3.
4

v

File-name-1 must be an ORGANIZATION RELATIVE or ORGANIZATION INDEXED file.
File-name-1 must have been SELECTed with an ACCESS MODE DYNAMIC or ACCESS MODE SEQUENTIAL.
File-name-1 must be OPEN in either INPUT or I-O mode at the time the START is executed.

If no KEY clause is specified, “KEY IS EQUAL TO identifier-1” will be assumed (see the next point for the definition of
identifier-1).

If file-name-1 is an ORGANIZATION RELATIVE file, identifier-1 must be the defined RELATIVE KEY of the file. If file-
name-1 is an ORGANIZATION INDEXED file, identifier-1 must be the defined RECORD KEY of the file (if no KEY
clause was specified) or may be the RECORD KEY or any of the ALTERNATE RECORD KEY fields for the file is a KEY
clause is specified.

After successful execution of a START statement, the internal record pointer into the file-name-1 data will be
positioned such that the next sequential READ statement executed against file-name-1 will read either:

a. The first record that satisfies the KEY clause specification if the relation check specified is EQUAL TO, GREATER
THAN or GREATER THAN OR EQUAL TO (or any of their syntactical equivalents), or ...

b. The last record that satisfies the KEY clause specification if the relation check specified is LESS THAN or LESS
THAN OR EQUAL TO (or any of their syntactical equivalents).

The START statement only positions the file for a subsequent sequential READ — it does not actually populate file-
name-1s 01-level records with new data. You must issue a sequential READ after a successful START to actually
read the record that satisfies the KEY clause.

The optional invalid-key-clause may be used to detect and recover from errors encountered during execution of the
START. Such errors might be actual I/O errors or “Key Not Exists” errors (FILE STATUS 23), indicating no record
exists that satisfies the KEY clause requirements. Lacking such a clause, you'll need to test the file’s FILE STATUS
data item manually after the START in order to determine success or failure.

See Also...
Types of Files 1.3.3.5 Relation Tests 6.1.8.2.5
Defining File Characteristics (SELECT) 4.2.1 The OPEN Statement 6.4.29
FILE-STATUS Values Figure The READ Statement 6.4.31
4-15

11FEB2012 Version 6-108

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

6.2.42. STOP

Figure 6-103 - STOP Syntax

The STOP statement halts the
program, returning control to the

. :] operating system.
RETURNING | GIVING { literal-1 }
RUN [identifier-1]
stop | RN ERROR } { literal-2 } -
STOP WITH STATUS
{NORMAL [identifier-2
literal-3

1. The RUN clause halts the program without displaying any special message to that effect.

2. The literal-2 clause displays the specified text on SYSOUT/STDOUT, waits for the user to press the Enter key and
then — once the key has been pressed — allows the program to continue execution.

3. The optional RETURNING/GIVING clause (the RETURNING and GIVING clauses may be used interchangeably)
provides the opportunity to return a numeric value to the operating system (a “return code”). The manner in
which the return code may be interrogated by the operating system varies, but Windows can use %ERRORLEVEL%
to query the return code while Unix shells such as sh, bash and ksh can query the return code as “$?”. Other Unix
shells may have different ways to access return code values.

4. The STATUS clause provides another means of returning a return code. Using the STATUS clause with a
literal/identifier specification is functionally equivalent to using the RETURNING/GIVING clause.

Using the STATUS clause without a literal/identifier specification will return a return code of 0 if the NORMAL
keyword is used or a 1 if ERROR was specified.

5. Your program will ALWAYS return a return code, even if no RETURNING/GIVING or STATUS clause is specified. In
the absence of the use of these clauses, the value in the special register RETURN-CODE at the time the STOP
statement is executed will be used as the return code.

6. Any programmer-defined exit procedure (established via the CBL_EXIT_PROC built-in subroutine) will be executed
by STOP RUN, but not by STOP literal.

7. Valid return code values can be in the range -2147483648 to +2147483647.

8. The code snippets below are all equivalent — they show different ways in which a GNU COBOL program may be
coded to pass a return code value of 16 back to the operating system and then halt.

STOP RUN RETURNING 16 MOVE 16 TO RETURN-CODE
STOP RUN

STOP RUN WITH ERROR STATUS 16

See Also...
Built-in Device Names Figure The CBL_EXIT_PROC Subroutine 8.3.1.25

+
oo

=
=
w

Special Registers 6.1.

11FEB2012 Version 6-109

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

6.2.43. STRING

Figure 6-104 - STRING Syntax

The STRING statement is used to
concatenate all or a part of one or strings

STRING together, forming a new string.
. SIZE

{ {{'teraf‘? }[DELIMITED BY{ literal-2 }] b
identifier-1 identifier-2

INTO identifier-3
[WITH POINTER identifier-4]
[overflow-clause 1]

[END-STRING]

1. Literal-1, literal-2, identifier-1, identifier-2 and identifier-3 must be explicitly or implicitly defined as alphanumeric
USAGE DISPLAY data. Any of those identifiers may be group items.

2. Identifier-4 must be a non-edited elementary integer numeric data item with a value greater than zero.
3. Each literal-1 / identifier-1 will be known as a sending item.

4. During the processing of the STRING statement, data will be copied from each sending item, in turn, into identifier-
3, one character at a time at a position defined by the current character pointer.

5. The initial value of the current character pointer will be the value of identifier-4 at the time the STRING statement
began execution. If no WITH POINTER clause is coded, a value of 1 (meaning “the 1% character position”) will be
assumed for the current character pointer.

6. For each sending item, the contents of the sending item will be copied — character-by-character — into identifier-3
at the character position specified by the current character pointer. After a character is copied, the current
character pointer will be incremented by 1 so that it points to the position within identifier-3 where the next
character should be copied.

7. The DELIMITED BY clause specifies how much of each sending item will be copied into the identifier-3. DELIMITED
BY SIZE (the default if no DELIMITED BY clause is specified) causes the entire contents of the sending item to be
copied into identifier-3. Using DELIMITED BY literal-2 or DELIMITED BY identifier-2 causes only the contents of the
sending item up to but not including the character sequence specified by the literal or identifier to be copied.

8. STRING processing will cease when one of the following occurs:
a. All sending items have been fully processed, or ...
b. The initial value of the current character pointer is less than 1, or ...

c. The value of the current character pointer exceeds the size of identifier-3 at the point the STRING statement
wants to copy a character into identifier-3

Events b and c reflect an overflow condition, which may be handled by use of the optional overflow-clause. Note
that in the case event b occurs, no data will be copied into identifier-3.

9. Identifier-3) is neither automatically initialized (to SPACES or any other value) at the start of a STRING statement
nor will it be SPACE filled should the total number of sending item characters copied into it be less than its size.
You may explicitly initialize identifier-3 yourself via the INITIALIZE or MOVE statements before executing the
STRING if you wish.

See Also...
Storage Format of Data (USAGE) 5.2.1.11 The INITIALIZE Statement 6.2.22

Handling Overflow (ON OVERFLOW) 6.1.12.5 The MOVE Statement 6.2.26

11FEB2012 Version 6-110

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

6.2.44. SUBTRACT
6.2.44.1. SUBTRACT Format 1 - SUBTRACT FROM

Figure 6-105 - SUBTRACT FROM Syntax

This format of the ADD statement generates the
literal-1 arithmetic sum of all arguments that appear
identifier-1 } before the FROM (identifier-1 or literal-1) and
subtracts that sum from each identifier-2.

SUBTRACT {

FROM { identifier-2 [rounding-option] } ..
[size-error-clause]

[END-SUBTRACT]

1. Identifier-1 and identifier-2 must be numeric unedited data items.
2. Literal-1 must be a numeric literal.

3. The optional “rounding-option” clause available to each identifier-2 will control how non-integer results will be
saved.

4. The optional size-error-clause may be used to detect arithmetic overflow situations where identifier-2 is
insufficiently sized to hold the generated results.

See Also...
‘ Handling Size Errors (ON SIZE ERROR) 6.1.12.6 ‘ ‘ Rounding Options 6.1.12.7

6.2.44.2. SUBTRACT Format 2 - SUBTRACT GIVING

Figure 6-106 - SUBTRACT GIVING Syntax

This format of the SUBTRACT statement
literal-1 generates the arithmetic sum of all
identifier-1 } arguments that appear before the FROM
(identifier-1 or literal-1), subtracts that sum
from the contents of identifier-2 and then
GIVING { identifier-3 [rounding-option] } .. replaces the contents of the identifiers listed
after the GIVING (identifier-3) with that
result.

SUBTRACT {

FROM identifier-2

[size-error-clause]

[END-SUBTRACT]

Identifier-1 and identifier-2 must be numeric unedited data items.
Identifier-3 must be a numeric (edited or unedited) data item.

Literal-1 must be a numeric literal.

el A

The optional “rounding-option” clause available to each identifier-2 will control how non-integer results will be
saved.

5. The optional size-error-clause may be used to detect arithmetic overflow situations where identifier-2 is
insufficiently sized to hold the generated results.

See Also...
Handling Size Errors (ON SIZE ERROR) 6.1.12.6 ‘ ‘ Rounding Options 6.1.12.7

11FEB2012 Version 6-111

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

6.2.44.3. SUBTRACT Format 3 - SUBTRACT CORRESPONDING

Figure 6-107 - SUBTRACT CORRESPONDING Syntax

This format of the SUBTRACT statement generates code
SUBTRACT CORRESPONDING identifier-1 equivalent to individual SUBTRACT FROM statements for
EROM identifier-2 [rounding-option] correspond'lng n"laftches of data items found subordinate
to the two identifiers.
[size-error-clause]

[END-SUBTRACT]

4. When corresponding matches are established, the effect of a SUBTRACT CORRESPONDING on those matches will
be as if a series of individual SUBTRACT FROM statements were done — one for each match.

5. The optional “rounding-option” clause available to each identifier-2 will control how non-integer results will be
saved.

6. The optional size-error-clause may be used to detect arithmetic overflow situations where identifier-2 is
insufficiently sized to hold the generated results.

See Also...

The CORRESPONDING Clause 6.1.12.2 Rounding Options 6.1.12.7

Handling Size Errors (ON SIZE ERROR) 6.1.12.6

11FEB2012 Version 6-112

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

6.2.45. SUPPRESS

Figure 6-108 - SUPPRESS Syntax

Although syntactically recognized by the GNU COBOL compiler, the SUPPRESS
statement is non-functional because the RWCS (COBOL Report Writer) is not

SUPPRESS PRINTING currently supported by GNU COBOL.

11FEB2012 Version 6-113

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

6.2.46. TERMINATE

Figure 6-109 - TERMINATE Syntax

Although syntactically recognized by the GNU COBOL compiler, the TERMINATE
statement is non-functional because the RWCS (COBOL Report Writer) is not

TERMINATE identifier-1 .. currently supported by GNU COBOL.

11FEB2012 Version 6-114

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

6.2.47. TRANSFORM

Figure 6-110 - TRANSFORM Syntax

The TRANSFORM statement scans a
literal-2 data item performing a series of

{ identifier-3 } monoalphabetic substitutions, defined

by the arguments before and after the

“TO” clause.

0

literal-1 }

TRANSFORM identifier-1 FROM
TRANSFORM identifier-1 FROM { identifier-2

1. Both literal-1 and/or literal-2 must be alphanumeric literals.

2. All of identifier-1, identifier-2 and identifier-3 must either be group items or alphanumeric data items. Data items
that are PICTURE 9 USAGE DISPLAY are acceoted, but will generate warning messages from the compiler.

3. The TRANSFORM statement will replace characters within identifier-1 that are found in the string specified before
the TO keyword with the corresponding characters from the string specified after the TO keyword.

4. This statement exists within GNU COBOL only to provide compatibility with COBOL programs written to pre-1985
standards. The TRANSFORM verb was made obsolete in the 1985 standard of COBOL, having been replaced by the
CONVERTING clause of the INSPECT statement. New programs should be coded to use INSPECT CONVERTING
rather than TRANSFORM.

See Also...

Defining a Data Item’s PICTURE 5.2.1.6 The INSPECT Statement 6.2.24.3
Storage Format of Data (USAGE) 5.2.1.11

11FEB2012 Version 6-115

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

6.2.48. UNLOCK

Figure 6-111 - UNLOCK Syntax

This statement syncs any as-yet unwritten file I/O buffers
UNLOCK il ; RECORD to the specified file (if any) and releases any record locks
file-name-1 1 pecoRDs held for records belonging to the named file.

1. If file-name-1 is a Sort/Merge work file, no action will be taken.

2. Not all GNU COBOL implementations support locking. Whether they do or not depends upon the operating system
they were built for and the build options that were used when GNU COBOL was generated.37 When a program
using one of those GNU COBOL implementations issues an UNLOCK, it will ignored. There will be no compiler
message issued. Buffer syncing, if needed, will still occur.

See Also...

Record Locking 6.1.9.1

3 The author of this manual — for example — uses a GNU COBOL build for Windows that utilizes the MinGW build/runtime

environment and uses the Berkeley Database module for advanced file I/O. That GNU COBOL build does NOT support LOCKing.
Generally speaking, UNIX builds will support record locking.

11FEB2012 Version 6-116

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

6.2.49. UNSTRING

Figure 6-112 - UNSTRING Syntax

The
. e UNSTRING
UNSTRING identifier-1
statement
[ALL] literal-1 { [ALL] /itera/—Z} parses a
DELINITED BY { identifier-2 [OR identifier-3] - string,
. e . o . e extracting
INTO { identifier-4 [DELIMITER 1IN identifier-5] [COUNT IN identifier-6] } .. any
[WITH POINTER identifier-7] number of
[TALLYING IN identifier-8] SUbStrmgs
from it.
[overflow-clause]
[END-UNSTRING]

I T o

10.

11.

12.

Identifier-1 through identifier-5 must be explicitly or implicitly defined as alphanumeric USAGE DISPLAY data. Any
of those identifiers may be group items.

Literal-1 and literal-2 must be alphanumeric literals.

Identifier-7 and identifier-8 must be elementary non-edited integer numeric items.
Identifier-7 must have a value greater than 0.

Identifier-1 is known as the source string. Identifier-4 is known as the destination field.

The source string will be broken up into substrings starting from the character position indicated by identifier-7 (or
from position 1 if there is no WITH POINTER clause). If the initial value of identifier-7 is less than 1 or greater than
the size of the source string, an “overflow” condition results. An overflow condition can be detected and dealt with
using the optional overflow-clause.

Substrings are identified by using the various delimiter strings specified on the DELIMITED BY clause as inter-
substring separators. Using the “ALL” option allows a delimiter sequence to be an arbitrarily long sequence of
occurrences of the delimiter literal whereas its absence treats each occurrence as a separate delimiter. When
multiple delimiters are specified, they will be looked for in the source string in the sequence in which they are
coded.

Two consecutive delimiter sequences will identify a null substring.

Each destination field may have an optional DELIMITER clause. If a DELIMITER clause is specified, identifier-5 will
have the delimiter character string used to identify the substring for the destination field MOVEd to it if and only if
data was actually found for that destination field (if not, identifier-5 remains unchanged).

Each destination field may have an optional COUNT clause. If a COUNT clause is specified, identifier-6 will have the
size of the substring for the destination field MOVEd to it if and only if data was actually found for that destination
field (if not, identifier-6 remains unchanged).

The TALLYING clause — if present — will be incremented by 1 each time a parsed substring is MOVEd to a
destination field.

None of identifier-4, identifier-5, identifier-6, identifier-7 or identifier-8 are initialized by the UNSTRING statement.
You need to do that yourself via MOVE or INITIALIZE.

11FEB2012 Version 6-117

GNU COBOL 2.0 Programmers Guide

PROCEDURE DIVISION

The following sample program illustrates the UNSTRING statement.

IDENTIFICATION DIVISION.
PROGRAM-ID. DEMOUNSTRING.
DATA DIVISION.
WORKING-STORAGE SECTION.

01 Full-Name PIC X(40).
01 Parsed-Info.
05 Last-Name PIC X(15).
05 First-Name PIC X(15).
05 MI PIC X(1).
05 Delim-LN PIC X(1).
05 Delim-FN PIC X(1).
05 Delim-MI PIC X(1).
05 Count-LN BINARY-CHAR.
05 Count-FN BINARY-CHAR.
05 Count-MI BINARY-CHAR.

05 Tallying-Ctr BINARY-CHAR.
PROCEDURE DIVISION.
P1. PERFORM UNTIL EXIT
DISPLAY "Enter Full Name (null quits):"
WITH NO ADVANCING
ACCEPT Full-Name
IF Full-Name = SPACES
EXIT PERFORM
END-IF
INITIALIZE Parsed-Info
UNSTRING Full-Name DELIMITED BY ", "
OR ","
OR
INTO Last-Name DELIMITER IN Delim-LN
COUNT IN Count-LN
First-Name DELIMITER IN Delim-FN
COUNT IN Count-FN
DELIMITER IN Delim-MI
COUNT IN Count-MI
TALLYING Tallying-Ctr

MI

DISPLAY "First-Name=" First-Name

" Delim="" Delim-FN

"' Count=" Count-FN
DISPLAY "MI =" MI "

" Delim="" Delim-MI

"' Count=" Count-MI
DISPLAY "Last-Name =" Last-Name

" Delim="" Delim-LN

"' Count=" Count-LN
DISPLAY "Tally= " Tallying-Ctr

END-PERFORM
DISPLAY "Bye!"
STOP RUN

)
ALL SPACES

The following is sample output from the program:

Enter Full Name (null quits):Cutler, Gary L
First-Name=Gary Delim=" ' Count=+004
MI =L Delil ' Count=+001
Last-Name =Cutler
Tally= +003

Delim=",' Count=+006

Enter Full Name (null quits):Snoddgrass,Throckmorton,P

Delim=",' Count=+012
Deli ' Count=+001
Delim=",' Count=+010

First-Name=Throckmorton
MI =P

Last-Name =Snoddgrass
Tally= +003

Enter Full Name (null quits):Munster Herman
First-Name=Herman Delim=" ' Count=+006
MI = Delim=" ' Count=+000
Last-Name =Munster Delim=" ' Count=+007
Tally= +002

Enter Full Name (null quits):

Bye!

See Also...

Storage Format of Data (USAGE)

5.2.1.11

g
N
N

The INITIALIZE Statement 6.

Handling Overflow (ON OVERFLOW)

6.1.12.5

The MOVE Statement 6

N
N
[e)}

11FEB2012 Version

6-118

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

6.2.50. WRITE

Figure 6-113 - WRITE Syntax

The WRITE statement writes a new record
to an OPEN file.

WRITE record-name-1
literal-1 }]

[EROM { identifier-1

WITH LOCK
WITH NO LOCK

{ literal-2 } LINE | LINES
identifier-2

[{ R } ADVANCING i]
mnemonic-name-1

PAGE

[AT END-OF-PAGE| EOP imperative-statement-1 |
[NOT AT END-OF-PAGE | EOP imperative-statement-2]
[invalid-key-clause]

[END-WRITE]

1. Record-name-1 must be defined as an 01-level record subordinate to the File Description (FD) of a file that is
currently OPEN for OUTPUT, I-O or EXTEND.

2. Literal-1 or identifier-1 must be explicitly or implicitly defined as alphanumeric USAGE DISPLAY data. /dentifier-1
may be a group item.

3. The optional FROM clause will cause literal-1 or identifier-1 to be implicitly MOVEd into record-name-1 prior to
writing record-name-1 to the file.

4. The optional LOCK clauses allow you to lock the newly-written record (LOCK) or to explicitly state that it should not
be locked (NO LOCK). The default is WITH NO LOCK.

5. The optional invalid-key-clause is legal only on WRITE statements used against for ORGANIZATION RELATIVE or
ORGANIZATION INDEXED files; it may be used to detect and recover from situations where a non-zero FILE STATUS
results from the WRITE (as might be the case if you try to WRITE a relative file record that already exists (use
REWRITE instead) or attempt to duplicate a RECORD KEY value when WRITEing to an INDEXED file.

The following points apply exclusively to files SELECTed and ASSIGNed to a LINE ADVANCING file, or to files with an

ORGANIZATION of LINE SEQUENTIAL

6. The ADVANCING and END-OF-PAGE clauses are intended for use only with these types of files. Using this clause
with any other ORGANIZATION will either be rejected outright by the compiler (ORGANIZATION IS RELATIVE or
ORGANIZATION IS INDEXED) or may introduce unwanted characters into the file (ORGANIZATION IS RECORD
BINARY SEQUENTIAL).

7. Both of these file types will use an end-of-record delimiter character sequence to signify where one record ends
and the next record begins. This delimiter sequence may be any of the following:

a. Aline-terminator sequence consisting of an ASCII carriage-return/line-feed character sequence (X’ODOA’) if you
are running a MinGW or native Windows build of GNU COBOL

b. Aline-terminator sequence consisting of an ASCII line-feed character (X’0A’) if you are running a Cygwin, Linix,
Unix or OSX build of GNU COBOL

c. An ASCll formfeed character

8. If no ADVANCING clause is specified on a WRITE to an ORGANIZATION LINE SEQUENTIAL file, BEFORE ADVANCING

11FEB2012 Version 6-119

GNU COBOL 2.0 Programmers Guide PROCEDURE DIVISION

The following points apply exclusively to files SELECTed and ASSIGNed to a LINE ADVANCING file, or to files with an

ORGANIZATION of LINE SEQUENTIAL

1 LINE will be assumed.

9. If no ADVANCING clause is specified on a WRITE to a LINE ADVANCING file, AFTER ADVANCING 1 LINE will be
assumed.

10. When BEFORE ADVANCING is used (or implied), the record is written to the file before the ADVANCING action
writes line-terminator characters to the file.

11. If AFTER ADVANCING is used (or implied), the ADVANCING action takes place and then the record data is written
to the file.

12. The ADVANCING n LINES clause will introduce the specified number of line-terminator character sequences into
the file either before the written record (AFTER ADVANCING) or after the written record (BEFORE ADVANCING).

13. If the LINAGE clause is absent from the file’s FD:

a. The ADVANCING PAGE clause will introduce an ASCIl formfeed character into the file either before the written
record (AFTER PAGE) or after the written record (BEFORE ADVANCING).

b. Management of areas on the printed page such as top-of page headers, bottom-of-page footers, dealing with
“full page” situations and the like are the complete responsibility of the programmer

14. If the LINAGE clause is present in the file’s FD:

a. The ADVANCING PAGE clause will introduce the appropriate number of line-terminator character sequences
into the file either before the written record (AFTER ADVANCING) or after the written record (BEFORE
ADVANCING) so as to force the printer to automatically advance to a new sheet of paper when the file prints.
When LINAGE is specified, no formfeed characters will be generated. Instead, it is assumed that the print